AMENDMENT OF SOLICIT	'ATION/MODIFI	CATION OF CONTRACT	1. CONTRACT	ID CODE	PAGE OF	PAGES
AME DIMENT OF SOLICIT	ATTOMMODIT	CATION OF CONTINACT	J	-	1	2
2. AMENDMENT/MODIFICATION NO.	3. EFFECTIVE DATE	4. REQUISITION/PURCHASE REQ. NO.		5. PROJECT	NO.(If application	able)
0004	10-Jul-2003	W16ROE-3134-6097				
6. ISSUED BY CODE USA ENGINEER DISTRICT, NEW YORK ATTN: CENAN-CT ROOM 1843 26 FEDERAL PLAZA (DACA51) NEW YORK NY 10278-0090	DACA51	7. ADMINISTERED BY (If other than item 6) CODE ENG-ENG. MGMT-FORT DRUM 4895 NININGER STREET BLDG 4895 FORT DRUM NY 13602				
8. NAME AND ADDRESS OF CONTRACTOR	(No., Street, County	State and Zip Code)	y 9A. AMENDM DACA51-03-B	IENT OF SC	OLICITATI	ON NO.
		:	X 9B. DATED (S 06-Jun-2003			
			10A. MOD. OF	F CONTRAC	CT/ORDER	NO.
			10B. DATED	(SEE ITEM	[13)	
CODE	FACILITY COL		NEATIONS			
X The above numbered solicitation is amended as set for		PPLIES TO AMENDMENTS OF SOLIC		X is not exte	11	
Offer must acknowledge receipt of this amendment p (a) By completing Items 8 and 15, and returning or (c) By separate letter or telegram which includes a RECEIVED AT THE PLACE DESIGNATED FOR T REJECTION OF YOUR OFFER. If by virtue of this a provided each telegram or letter makes reference to the	copies of the amendment reference to the solicitation THE RECEIPT OF OFFER mendment you desire to ch	nt; (b) By acknowledging receipt of this amendmen n and amendment numbers. FAILURE OF YOU S PRIOR TO THE HOUR AND DATE SPECIFII ange an offer already submitted, such change may	ent on each copy of the R ACKNOWLEDGMI ED MAY RESULT IN the made by telegram of	offer submitted ENT TO BE	d;	
12. ACCOUNTING AND APPROPRIATION D	ATA (If required)					
) MODIFICATIONS OF CONTRACTS/				
A. THIS CHANGE ORDER IS ISSUED PUR CONTRACT ORDER NO. IN ITEM 10A	SUANT TO: (Specify	T/ORDER NO. AS DESCRIBED IN ITE y authority) THE CHANGES SET FORT		RE MADE I	N THE	
B. THE ABOVE NUMBERED CONTRACT/ office, appropriation date, etc.) SET FOR C. THIS SUPPLEMENTAL AGREEMENT	RTH IN ITEM 14, PU	RSUANT TO THE AUTHORITY OF F		ach as chang	es in paying	,
D. OTHER (Specify type of modification an	d authority)					
(41.1.7.31.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1						
E. IMPORTANT: Contractor is not,	is required to sig	gn this document and return	copies to the issuir	ng office.		
14. DESCRIPTION OF AMENDMENT/MODIF where feasible.) The purpose of this amendment is to incorpor of this amendment. The bid opening date re	rate the attached cha	anges to the specifications. All other to		-		
NOTE: Bidders must acknowledge receipt of methods: in the space provided on the SF14 ACKNOWLEDGE AMENDMENTS BY THE DATACTE BID, LATE MODIFICATIONS OF BIDS OF	442, by separate lette ΓΕ AND TIME SPECIFI	r, or by telegram, or by signing block 1 ED MAY RESULT IN REJECTION OF YC	5 below. FAILUR	RE TO		
Except as provided herein, all terms and conditions of the o		16A. NAME AND TITLE OF CO	NTRACTING OF		e or print)	
15B. CONTRACTOR/OFFEROR	15C. DATE SIGNE	TEL: D 16B. UNITED STATES OF AMER	EMAIL:	160	C. DATE SI	GNED
13B. CONTRACTOR/OFTEROR	JUC. DATE SIGNE.		лел			
(Signature of person authorized to sign)	-	(Signature of Contracting Off	icer)	1	0-Jul-2003	
(Brace of Person dumonized to sign)		(5.5 or contracting off	/			

SECTION SF 30 BLOCK 14 CONTINUATION PAGE

SUMMARY OF CHANGES

THIS PAGE INTENTIONALLY LEFT BLANK

(End of Summary of Changes)

PROJECT TABLE OF CONTENTS Rev. 2

DIVISION 02 - SITE WORK

02714	DRAINAGE LAYER	
02721	SUBBASE COURSES	
02722	AGGREGATE BASE COURSE	
02741	HOT-MIX ASPHALT (HMA) FOR ROADS	
02753	CONCRETE PAVEMENT FOR AIRFIELDS AND OTHER HEA	AVY-DUTY PAVEMENTS

-- End Of Project Table Of Contents --

SECTION TABLE OF CONTENTS

DIVISION 02 - SITE WORK

SECTION 02714

DRAINAGE LAYER

PART 1 GENERAL

- 1.1 REFERENCES
- 1.2 SUBMITTALS
- 1.3 SYSTEM DESCRIPTION
- 1.4 FIELD COMPACTION
- 1.5 EQUIPMENT
 - 1.5.1 General Requirements
 - 1.5.2 Placement Equipment
 - 1.5.3 Compaction Equipment
- 1.6 WEATHER LIMITATION
- 1.7 SAMPLING AND TESTING
 - 1.7.1 General Requirements
 - 1.7.2 Sampling
 - 1.7.3 Test Methods
 - 1.7.3.1 Sieve Analyses
 - 1.7.3.2 Density Tests
 - 1.7.3.3 Soundness Test
 - 1.7.3.4 Los Angeles Abrasion Test
 - 1.7.3.5 Flat or Elongated Particles Tests
 - 1.7.3.6 Fractured Faces Tests
 - 1.7.4 Initial Tests
 - 1.7.5 Testing Frequency
 - 1.7.5.1 Aggregate Layer
 - 1.7.6 Approval of Materials
 - 1.7.6.1 Aggregate

PART 2 PRODUCTS

- 2.1 AGGREGATES
 - 2.1.1 Aggregate Quality
 - 2.1.2 Gradation Requirements

PART 3 EXECUTION

- 3.1 STOCKPILING AGGREGATES
- 3.2 TEST SECTION
 - 3.2.1 Data
 - 3.2.2 Scheduling
 - 3.2.3 Location and Size
 - 3.2.4 Initial Testing
 - 3.2.5 Mixing, Placement, and Compaction
 - 3.2.6 Procedure
 - 3.2.6.1 RDM Aggregate Drainage Layer Tests
 - 3.2.7 Evaluation
- 3.3 PREPARATION OF UNDERLYING COURSE
- 3.4 TRANSPORTING MATERIAL
 - 3.4.1 Aggregate Drainage Layer Material

- 3.5 PLACING
 - 3.5.1 General Requisites 3.5.2 Hand Spreading
- 3.6 COMPACTION REQUIREMENTS
- 3.7 FINISHING
- 3.8 EDGES OF DRAINAGE LAYER
- 3.9 SMOOTHNESS TEST
- 3.10 THICKNESS CONTROL
 3.11 DEFICIENCIES
- - 3.11.1 Grade and Thickness
 - 3.11.2 Density
 - 3.11.3 Smoothness
- -- End of Section Table of Contents --

SECTION 02714

DRAINAGE LAYER

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM C 88	(1999a) Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate
ASTM C 117	(1995) Materials Finer Than 75 micrometer (No. 200) Sieve in Mineral Aggregates by Washing
ASTM C 131	(2001) Resistance to Degradation of Small- Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine
ASTM C 136	(2001) Sieve Analysis of Fine and Coarse Aggregates
ASTM D 75	(1987; R 1997) Sampling Aggregates
ASTM D 2487	(2000) Soils for Engineering Purposes (Unified Soil Classification System)
ASTM D 2922	(2001) Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)
ASTM D 3017	(2001) Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth)
ASTM D 4791	(1999) Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate
ASTM E 548	(1994el) General Criteria Used for Evaluating Laboratory Competence

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Waybills and Delivery Tickets

Certified waybills and delivery tickets for all aggregate materials actually used.

SD-06 Test Reports

Sampling and Testing; G, RE

Copies of field test results within 24 hours of completion of tests.

Approval of Materials; G, RE

Material sources and material test results prior to field use.

Evaluation; G, RE

Test section construction report.

1.3 SYSTEM DESCRIPTION

The Contractor shall build a drainage layer under the pavements as indicated on drawings and the drainage layer shall consist of Rapid Draining Material (RDM).

1.4 FIELD COMPACTION

Field compaction requirements shall be based on the results of a test section constructed by the Contractor, using the materials, methods, and equipment proposed for use in the work. The test section shall meet the requirements of paragraph TEST SECTION.

1.5 EQUIPMENT

1.5.1 General Requirements

All plant, equipment, and tools used in the performance of the work will be subject to approval before the work is started and shall be maintained in satisfactory working condition at all times.

1.5.2 Placement Equipment

An asphalt paving machine shall be used to place drainage layer material. Alternate methods may be used if it can be demonstrated in the test section that these methods obtain the specified results.

1.5.3 Compaction Equipment

A dual or single smooth 10 ton (min.) vibratory drum roller which provides a maximum compactive effort without crushing the drainage layer aggregate shall be used to compact drainage layer material.

1.6 WEATHER LIMITATION

Drainage layer material shall be placed when the atmospheric temperature is above 2 degrees C. Areas of completed drainage layer or underlying courses that are damaged by freezing, rainfall, or other weather conditions or by contamination from sediments, dust, dirt, or foreign material shall be corrected by the Contractor to meet specified requirements.

1.7 SAMPLING AND TESTING

1.7.1 General Requirements

Sampling and testing shall be the responsibility of the Contractor. Sampling and testing shall be performed by an approved commercial testing laboratory, or by the Contractor subject to approval. If the Contractor elects to establish testing facilities of his own, approval of such facilities shall be based on compliance with ASTM E 548, and no work requiring testing will be permitted until the Contractor's facilities have been inspected and approved. The first inspection of the facilities will be at the expense of the Contractor and any subsequent inspections required because of failure of the first inspection shall be at the expense of the Contractor. Drainage layer materials shall be tested to establish compliance with the specified requirements.

1.7.2 Sampling

Aggregate samples shall be taken in accordance with ASTM D 75.

1.7.3 Test Methods

1.7.3.1 Sieve Analyses

Sieve analyses shall be made in accordance with ASTM C 117 and ASTM C 136.

1.7.3.2 Density Tests

Field density tests for RDM drainage layers shall be made in accordance with ASTM D 2922 by Direct Transmission Method for the full depth of the lift. When using this method, ASTM D 3017 shall be used to determine the moisture content of the aggregate drainage layer material. The calibration curves furnished with the moisture gauges shall be checked along with density calibration checks as described in ASTM D 3017. The calibration checks of both the density and moisture gauges shall be made by the prepared containers of material method, as described in paragraph "Calibration" of ASTM D 2922, on each different type of material being tested at the beginning of a job and at intervals as directed by the Contracting Officer.

1.7.3.3 Soundness Test

Soundness tests shall be made in accordance with ASTM C 88.

1.7.3.4 Los Angeles Abrasion Test

Los Angeles abrasion tests shall be made in accordance with ASTM C 131.

1.7.3.5 Flat or Elongated Particles Tests

Flat and/or elongated particles tests shall be made in accordance with ASTM D 4791.

1.7.3.6 Fractured Faces Tests

When aggregates are supplied from crushed gravel, approved test methods shall be used to assure the aggregate meets the requirements for fractured faces in paragraph AGGREGATES.

1.7.4 Initial Tests

One of each of the following tests shall be performed on the proposed material prior to commencing construction to demonstrate that the proposed material meets all specified requirements when furnished. If materials from more than one source are going to be utilized, this testing shall be completed for each source.

- a. Sieve Analysis including 0.02 mm size material.
- b. Flat and/or elongated particles
- c. Fractured Faces
- d. Los Angeles abrasion.
- e. Soundness.

1.7.5 Testing Frequency

1.7.5.1 Aggregate Layer

Field density and moisture content tests shall be performed at a rate of at least one test for every 2000 square meters of completed area and not less than one test for each day's production. Sieve analyses shall be performed at a rate of at least one test for every 2000 square meters of completed area. Soundness tests, Los Angeles abrasion tests, fractured faces tests and flat and/or elongated particles tests shall be performed at the rate of one test for every 12,000 square meters of production.

1.7.6 Approval of Materials

1.7.6.1 Aggregate

The aggregate source shall be selected at least 60 days prior to field use in the test section. Tentative approval of the source will be based on certified test results to verify that materials proposed for use meet the contract requirements. Final approval of both the source and the material will be based on test section performance and tests for gradation, soundness, Los Angeles abrasion, flat and/or elongated particles tests and fractured faces tests. For aggregate drainage layer materials, these tests shall be performed on samples taken from the completed and compacted drainage layer course within the test section.

PART 2 PRODUCTS

2.1 AGGREGATES

Aggregates shall consist of clean, sound, hard, durable, angular particles of crushed stone or crushed gravel which meet the specification requirements. The aggregates shall be free of silt and clay as defined by ASTM D 2487, vegetable matter, and other objectionable materials or coatings.

2.1.1 Aggregate Quality

The aggregate shall have a soundness loss not greater than 18 percent weighted averaged at 5 cycles when tested in magnesium sulfate in accordance with ASTM C 88. The aggregate shall have a percentage of loss on abrasion not to exceed 40 after 500 revolutions as determined by ASTM C 131. The percentage of flat and/or elongated particles shall be determined by ASTM D 4791 with the following modifications. The aggregates shall be separated into 2 size fractions. Particles greater than 12.5 mm sieve and particles passing the 12.5 mm sieve and retained on the 4.75 mm sieve. The percentage of flat and/or elongated particles in either fraction shall not exceed 20. A flat particle is one having a ratio of width to thickness greater than 3; an elongated particle is one having a ratio of length to width greater than 3. When the aggregate is supplied from more than one source, aggregate from each source shall meet the specified requirements. When the aggregate is supplied from crushed gravel it shall be manufactured from gravel particles, 90 percent of which by weight are retained on the maximum-size sieve listed in TABLE I. In the portion retained on each sieve specified, the crushed gravel shall contain at least 90 percent by weight of crushed pieces having two or more freshly fractured faces with the area of each face being at least equal to 75 percent of the smallest midsectional area of the face. When two fractures are contiguous, the angle between planes of the fractures must be at least 30 degrees in order to count as 2 fractured faces.

2.1.2 Gradation Requirements

Drainage layer aggregates shall be well graded within the limits specified in TABLE I.

TABLE I. GRADATION OF DRAINAGE LAYER MATERIAL Percentage by Weight Passing Square-Mesh Sieve

Siev	ve	Rapid draining				
Designation		Material (RDM)				
37.50	mm	100				
25.00	mm	70-100				
19.00	mm	55-100				
12.50	mm	40-80				
9.50	mm	30-65				
4.75	mm	10-50				
2.36	mm	0-25				
1.18	mm	0-5				

NOTE 1: The values are based on aggregates of uniform specific gravity, and the percentages passing the various sieves may require appropriate correction by the Contracting Officer when aggregates of varying specific gravities are used.

NOTE 2: For RDM, the coefficient of uniformity (CU) shall be greater than 3.5. (CU = D60/D10). The contractor is responsible for adjusting the RDM gradation within the ranges listed in Table I to provide a stable construction surface for the proposed equipment and method of transporting materials.

PART 3 EXECUTION

3.1 STOCKPILING AGGREGATES

Aggregates shall be stockpiled at locations designated by the Contracting Officer. Stockpile areas shall be cleared and leveled prior to stockpiling aggregates. Aggregates shall be stockpiled to prevent segregation and contamination. Aggregates obtained from different sources shall be stockpiled separately.

3.2 TEST SECTION

3.2.1 Data

A test section shall be constructed to evaluate the ability to carry traffic, including placement of overlaying material and the constructability of the drainage layer including required mixing, placement, and compaction procedures. Test section data will be used by the Contracting Officer to validate the required number of compaction passes given in paragraph Compaction Requirements and the field dry density requirements for full scale production.

3.2.2 Scheduling

The test section shall be constructed a minimum of 7 days prior to the start of full scale production to provide sufficient time for an evaluation of the proposed materials, equipment and procedures including Government QA testing.

3.2.3 Location and Size

The test section shall be placed inside the production paving limits. The underlying courses and subgrade preparation, required for the pavement section, shall be completed, inspected and approved in the test section prior to constructing the drainage layer. The test section shall be a minimum of 30 m long and two full paving lanes wide side by side.

3.2.4 Initial Testing

Certified test results, to verify that the materials proposed for use in the test section meet the contract requirements, shall be provided by the Contractor and approved by the Contracting Officer prior to the start of the test section.

3.2.5 Mixing, Placement, and Compaction

Mixing, placement, and compaction shall be accomplished using equipment meeting the requirements of paragraph EQUIPMENT. Compaction equipment speed shall be no greater than 2.4 km/hour. Compaction shall start from the outside edges of the paving lane and proceed to the centerline of the lift

being placed. The roller shall stay a minimum of one half the roller width from the outside edge of the drainage layer being placed until the desired density is obtained. The outside edge shall then be rolled.

3.2.6 Procedure

3.2.6.1 RDM Aggregate Drainage Layer Tests

The test section shall be constructed with aggregate in a wet state so as to establish a correlation between number of roller passes and dry density achievable during field production. Three separate areas within the test section shall be designated, each area shall be tested for density, moisture, and gradation. All testing shall be completed in the middle third of the test section being placed. Density and moisture content tests shall be conducted in accordance with ASTM D 2922 and ASTM D 3017. Sieve analysis tests shall be conducted on samples, taken adjacent to the density test locations. One set of tests (i.e. density, moisture, and sieve analysis) shall be taken before the third compaction pass and after each subsequent compaction pass at three separate locations as directed by the Contracting Officer. A pass shall be considered the movement of a roller over the drainage layer area for one direction only. Compaction for the RDM shall consist of a maximum of 5 passes in the vibrating state and one final pass in the static state. Compaction passes and density readings shall continue until the difference between the average dry densities of any two consecutive passes is less than or equal to 16 kg per cubic meter.

3.2.7 Evaluation

Within 5 working days of completion of the test section, the Contractor shall submit to the Contracting Officer a Test Section Construction Report complete with all required test data and correlations. The Contracting Officer will evaluate the data and validate the required number of passes of the roller, the need for a final static pass of the roller, and provide the dry density for field density control during construction.

3.3 PREPARATION OF UNDERLYING COURSE

Prior to constructing the drainage layer, the underlying course shall be cleaned of all foreign materials. During construction, the underlying course shall contain no frozen material. The underlying course shall conform to Section 02721 SUBBASE COURSES. Ruts or soft yielding spots in the underlying courses having inadequate compaction and deviations of the surface from the requirements set forth herein shall be corrected by loosening and removing soft or unsatisfactory material and by adding approved material, reshaping to line, and grade, and recompacting to specified density. The finished underlying course shall not be disturbed by traffic or other operations and shall be maintained by the Contractor in a satisfactory condition until the drainage layer is placed.

3.4 TRANSPORTING MATERIAL

3.4.1 Aggregate Drainage Layer Material

Aggregate drainage layer material shall be transported to the site in a manner which prevents segregation and contamination of materials.

3.5 PLACING

3.5.1 General Requisites

Drainage layer material shall be placed on the underlying course in lifts of uniform thickness using equipment meeting the requirements of paragraph EQUIPMENT. When a compacted layer 150 mm or less in thickness is required, the material shall be placed in a single lift. When a compacted layer in excess of 150 mm is required, the material shall be placed in lifts of equal thickness. No lift shall exceed 150 mm or be less than 75 mm when compacted. The lifts when compacted after placement shall be true to the grades or levels required with the least possible surface disturbance. Where the drainage layer is placed in more than one lift, the previously constructed lift shall be cleaned of loose and foreign material. Such adjustments in placing procedures or equipment shall be made to obtain true grades and minimize segregation and degradation of the drainage layer material.

3.5.2 Hand Spreading

In areas where machine spreading is impractical, drainage layer material shall be spread by hand. The material shall be spread uniformly in a loose layer to prevent segregation. The material shall conform to the required grade and thickness after compaction.

3.6 COMPACTION REQUIREMENTS

Compaction shall be accomplished using rollers meeting the requirements of paragraph EQUIPMENT and operating at a rolling speed of no greater than 2.4 km per hour. Each lift of drainage material, including shoulders when specified under the shoulders, shall be compacted with the number of passes of the roller as follows: RDM material shall use 4 passes in the vibratory state and one in the static. The Contracting Officer will validate the number of roller passes after the test section is evaluated and before production starts. In addition, a minimum field dry density, as specified by the Contracting Officer, shall be maintained. If the required field dry density is not obtained, the number of roller passes shall be adjusted in accordance with paragraph DEFICIENCIES. Aggregate shall be compacted in a moisture state as determined in the test section. Excessive rolling resulting in crushing of aggregate particles shall be avoided. In all places not accessible to the rollers, the drainage layer material shall be compacted with mechanical hand operated tampers.

3.7 FINISHING

The top surface of the drainage layer shall be finished after final compaction as determined from the test section. Adjustments in rolling and finishing procedures shall be made to obtain grades and minimize segregation and degradation of the drainage layer material.

3.8 EDGES OF DRAINAGE LAYER

Shoulder material shall be placed along the edges of the drainage layer course in a quantity that will compact to the thickness of the layer being constructed. At least 1 m width of the shoulder shall be rolled and compacted simultaneously with the rolling and compacting of each lift of the drainage layer.

3.9 SMOOTHNESS TEST

The surface of the top lift shall not deviate more than 6 mm when tested with either a 3.05 m or 3.66 m straightedge applied parallel with and at right angles to the centerline of the area to be paved. Deviations exceeding 6 mm shall be corrected in accordance with paragraph DEFICIENCIES.

3.10 THICKNESS CONTROL

The completed thickness of the drainage layer shall be within 13 mm of the thickness indicated. Thickness shall be measured at intervals providing at least one measurement for each 500 square meters of drainage layer. Measurements shall be made in test holes at least 75 mm in diameter. Where the measured thickness is more than 13 mm deficient, such areas shall be corrected in accordance with paragraph DEFICIENCIES. Where the measured thickness is 13 mm more than indicated, it will be considered as conforming to the requirements plus 13 mm, provided the surface of the drainage layer is within 13 mm of established grade. The average job thickness shall be the average of all job measurements as specified above but within 6 mm of the thickness shown on the drawings.

3.11 DEFICIENCIES

3.11.1 Grade and Thickness

Deficiencies in grade and thickness shall be corrected so that both grade and thickness tolerances are met. Thin layers of material shall not be added to the top surface of the drainage layer to meet grade or increase thickness. If the elevation of the top of the drainage layer is more than 13 mm above the plan grade it shall be trimmed to grade and finished in accordance with paragraph FINISHING. If the elevation of the top surface of the drainage layer is 13 mm or more below the required grade, the surface of the drainage layer shall be scarified to a depth of at least 75 mm, new material shall be added, and the layer shall be blended and recompacted to bring it to grade. Where the measured thickness of the drainage layer is more than 13 mm deficient, such areas shall be corrected by excavating to the required depth and replaced with new material to obtain a compacted lift thickness of at least 75 mm. The depth of required excavation shall be controlled to keep the final surface elevation within grade requirements and to preserve layer thicknesses of materials below the drainage layer.

3.11.2 Density

Density shall be considered deficient if the field dry density test results are below the dry density specified by the Contracting Officer. If the densities are deficient, the layer shall be rolled with 2 additional passes of the specified roller. If the dry density is still deficient, work will be stopped until the cause of the low dry densities can be determined and reported to the Contracting Officer.

3.11.3 Smoothness

Deficiencies in smoothness shall be corrected as if they are deficiencies in grade or thickness. All tolerances for grade and thickness shall be maintained while correcting smoothness deficiencies.

-- End Of Section --

SECTION TABLE OF CONTENTS

DIVISION 02 - SITE WORK

SECTION 02741

HOT-MIX ASPHALT (HMA) FOR ROADS

PART 1 GENERAL

- 1.1 REFERENCES
- 1.2 DESCRIPTION OF WORK
- 1.3 SUBMITTALS
- 1.4 ASPHALT MIXING PLANT
- 1.5 HAULING EQUIPMENT
- 1.6 ASPHALT PAVERS
 - 1.6.1 Receiving Hopper
 - 1.6.2 Automatic Grade Controls
- 1.7 ROLLERS
- 1.8 WEATHER LIMITATIONS

PART 2 PRODUCTS

- 2.1 AGGREGATES
 - 2.1.1 Coarse Aggregate
 - 2.1.2 Fine Aggregate
 - 2.1.3 Mineral Filler
 - 2.1.4 Aggregate Gradation
- 2.2 ASPHALT CEMENT BINDER
- 2.3 MIX DESIGN
 - 2.3.1 JMF Requirements
 - 2.3.2 Adjustments to Field JMF

PART 3 EXECUTION

- 3.1 PREPARATION OF ASPHALT BINDER MATERIAL
- 3.2 PREPARATION OF MINERAL AGGREGATE
- 3.3 PREPARATION OF HOT-MIX ASPHALT MIXTURE
- 3.4 PREPARATION OF THE UNDERLYING SURFACE
- 3.5 TEST SECTION
 - 3.5.1 Sampling and Testing for Test Section
 - 3.5.2 Additional Test Sections
- 3.6 TESTING LABORATORY
- 3.7 TRANSPORTING AND PLACING
 - 3.7.1 Transporting
 - 3.7.2 Placing
- 3.8 COMPACTION OF MIXTURE
- 3.9 JOINTS
 - 3.9.1 Transverse Joints
 - 3.9.2 Longitudinal Joints
- 3.10 CONTRACTOR QUALITY CONTROL
 - 3.10.1 General Quality Control Requirements
 - 3.10.2 Testing Laboratory
 - 3.10.3 Quality Control Testing
 - 3.10.3.1 Asphalt Content
 - 3.10.3.2 Gradation

- 3.10.3.3 Temperatures 3.10.3.4 Aggregate Moisture 3.10.3.5 Moisture Content of Mixture 3.10.3.6 Laboratory Air Voids, Marshall Stability and Flow 3.10.3.7 In-Place Density 3.10.3.8 Grade and Smoothness 3.10.3.9 Additional Testing 3.10.3.10 QC Monitoring 3.10.4 Sampling 3.10.5 Control Charts 3.11 MATERIAL ACCEPTANCE 3.11.1 Percent Payment 3.11.2 Sublot Sampling 3.11.3 Additional Sampling and Testing 3.11.4 Laboratory Air Voids 3.11.5 Mean Absolute Deviation 3.11.6 In-place Density 3.11.6.1 General Density Requirements 3.11.6.2 Mat and Joint Densities 3.11.7 Grade 3.11.8 Surface Smoothness 3.11.8.1 Smoothness Requirements 3.11.8.2 Testing Method 3.11.8.3 Payment Adjustment for Smoothness
- -- End of Section Table of Contents --

SECTION 02741

HOT-MIX ASPHALT (HMA) FOR ROADS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

AASHTO MP 1	(1998) Provisional Specification fo	r
	Performance Graded Asphalt Binder	

AASHTO TP53	(2000)	Dete	ermining	Asphalt	Content	of	Hot	Mix
	Asphali	t by	the Iqn	ition Me	thod			

ASPHALT INSTITUTE (AI)

AI MS-02	(6th Edition;	R 1997)	Mix Design	Methods	for
	Asphalt				

ASTM INTERNATIONAL (ASTM)

ASTM C 117	(1995) Materials Finer Than 75 micrometer (No. 200) Sieve in Mineral Aggregates by Washing
ASTM C 1252	(1998) Uncompacted Void Content of Fine Aggregate (as Influenced by Particle Shape, Surface Texture, and Grading)
ASTM C 131	(2001) Resistance to Degradation of Small- Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine
ASTM C 136	(2001) Sieve Analysis of Fine and Coarse Aggregates
ASTM C 566	(1997) Total Evaporable Moisture Content of Aggregate by Drying
ASTM C 88	(1999a) Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate
ASTM D 140	(2001) Sampling Bituminous Materials
ASTM D 1461	(1985; R 2001) Moisture or Volatile Distillates in Bituminous Paving Mixtures
ASTM D 1559	(1989) Resistance to Plastic Flow of Bituminous Mixtures Using Marshall Apparatus

ASTM D 2041	(2000) Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures
ASTM D 2172	(2001e1) Quantitative Extraction of Bitumen from Bituminous Paving Mixtures
ASTM D 2419	(1995) Sand Equivalent Value of Soils and Fine Aggregate
ASTM D 242	(1995; R 2000el) Mineral Filler for Bituminous Paving Mixtures
ASTM D 2489	(2000) Estimating Degree of Particle Coating of Bituminous-Aggregate Mixtures
ASTM D 2726	(2000) Bulk Specific Gravity and Density of Non-Absorptive Compacted Bituminous Mixtures
ASTM D 2950	(1991; R 1997) Density of Bituminous Concrete in Place by Nuclear Method
ASTM D 3665	(1999) Random Sampling of Construction Materials
ASTM D 3666	(2001) Minimum Requirements for Agencies Testing and Inspecting Road and Paving Materials
ASTM D 4125	(1994;R 2000) Asphalt Content of Bituminous Mixtures by the Nuclear Method
ASTM D 4791	(1999) Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate
ASTM D 4867/D 4867M	(1996) Effect of Moisture on Asphalt Concrete Paving Mixtures
ASTM D 5444	(1998) Mechanical Size Analysis of Extracted Aggregate
ASTM D 6307	(1998) Asphalt Content of Hot Mix Asphalt by Ignition Method
ASTM D 995	(1995b) Mixing Plants for Hot-Mixed, Hot-Laid Bituminous Paving Mixtures
STATE OF CALIFORNIA DE	PARTMENT OF TRANSPORTATION (CDT)
CDT Test 526	(1978) Operation of California Profilograph and Evaluation of Profiles
U.S. ARMY CORPS OF ENG	INEERS (USACE)

COE CRD-C 171 (1995) Test Method for Determining Percentage of Crushed Particles in Aggregate

1.2 DESCRIPTION OF WORK

The work shall consist of pavement courses composed of mineral aggregate and asphalt material heated and mixed in a central mixing plant and placed on a prepared course. HMA designed and constructed in accordance with this section shall conform to the lines, grades, thicknesses, and typical cross sections shown on the drawings. Each course shall be constructed to the depth, section, or elevation required by the drawings and shall be rolled, finished, and approved before the placement of the next course.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Mix Design; G, ED.

Proposed JMF.

Contractor Quality Control; G, ED.

Quality control plan.

Material Acceptance; G, ED.

Acceptance test results and pay calculations.

SD-04 Samples

Asphalt Cement Binder

(20 L) sample for mix design verification.

Aggregates

Sufficient materials to produce 90 kg of blended mixture for mix design verification.

SD-06 Test Reports

Aggregates; G, ED. QC Monitoring; G, ED.

Aggregate and QC test results.

SD-07 Certificates

Asphalt Cement Binder; G, ED.

Copies of certified test data.

Testing Laboratory; G, ED.

Certification of compliance.

Plant Scale Calibration Certification

1.4 ASPHALT MIXING PLANT

Plants used for the preparation of hot-mix asphalt shall conform to the requirements of ASTM D 995 with the following changes:

- a. Truck Scales. The asphalt mixture shall be weighed on approved certified scales at the Contractor's expense. Scales shall be inspected and sealed at least annually by an approved calibration laboratory.
- b. Testing Facilities. The Contractor shall provide laboratory facilities at the plant for the use of the Government's acceptance testing and the Contractor's quality control testing.
- c. Inspection of Plant. The Contracting Officer shall have access at all times, to all areas of the plant for checking adequacy of equipment; inspecting operation of the plant; verifying weights, proportions, and material properties; checking the temperatures maintained in the preparation of the mixtures and for taking samples. The Contractor shall provide assistance as requested, for the Government to procure any desired samples.
- d. Storage Bins. Use of storage bins for temporary storage of hot-mix asphalt will be permitted as follows:
 - (1) The asphalt mixture may be stored in non-insulated storage bins for a period of time not exceeding 3 hours.
 - (2) The asphalt mixture may be stored in insulated storage bins for a period of time not exceeding 8 hours. The mix drawn from bins shall meet the same requirements as mix loaded directly into trucks.

1.5 HAULING EQUIPMENT

Trucks used for hauling hot-mix asphalt shall have tight, clean, and smooth metal beds. To prevent the mixture from adhering to them, the truck beds shall be lightly coated with a minimum amount of paraffin oil, lime solution, or other approved material. Petroleum based products shall not be used as a release agent. Each truck shall have a suitable cover to protect the mixture from adverse weather. When necessary to ensure that the mixture will be delivered to the site at the specified temperature, truck beds shall be insulated or heated and covers (tarps) shall be securely fastened.

1.6 ASPHALT PAVERS

Asphalt pavers shall be self-propelled, with an activated screed, heated as necessary, and shall be capable of spreading and finishing courses of hot-mix asphalt which will meet the specified thickness, smoothness, and grade.

The paver shall have sufficient power to propel itself and the hauling equipment without adversely affecting the finished surface.

1.6.1 Receiving Hopper

The paver shall have a receiving hopper of sufficient capacity to permit a uniform spreading operation. The hopper shall be equipped with a distribution system to place the mixture uniformly in front of the screed without segregation. The screed shall effectively produce a finished surface of the required evenness and texture without tearing, shoving, or gouging the mixture.

1.6.2 Automatic Grade Controls

If an automatic grade control device is used, the paver shall be equipped with a control system capable of automatically maintaining the specified screed elevation. The control system shall be automatically actuated from either a reference line and/or through a system of mechanical sensors or sensor-directed mechanisms or devices which will maintain the paver screed at a predetermined transverse slope and at the proper elevation to obtain the required surface. The transverse slope controller shall be capable of maintaining the screed at the desired slope within plus or minus 0.1 percent. A transverse slope controller shall not be used to control grade. The controls shall be capable of working in conjunction with any of the following attachments:

- a. Ski-type device of not less than 9.14 m in length.
- b. Taut stringline set to grade.
- c. Short ski or shoe for joint matching.
- d. Laser control.

1.7 ROLLERS

Rollers shall be in good condition and shall be operated at slow speeds to avoid displacement of the asphalt mixture. The number, type, and weight of rollers shall be sufficient to compact the mixture to the required density while it is still in a workable condition. Equipment which causes excessive crushing of the aggregate shall not be used.

1.8 WEATHER LIMITATIONS

The hot-mix asphalt shall not be placed upon a wet surface or when the surface temperature of the underlying course is less than specified in Table 1.

TABLE 1. SURFACE TEMPERATURE LIMITATIONS OF UNDERLYING COURSE

Mat Thickness, mm	Degrees C
75 or greater	4
Less than 75	7

PART 2 PRODUCTS

2.1 AGGREGATES

Aggregates shall consist of crushed stone, crushed gravel, screenings, natural sand and mineral filler, as required. The portion of material retained on the 4.75 mm sieve is coarse aggregate. The portion of material passing the 4.75 mm sieve and retained on the 0.075 mm sieve is fine aggregate. The portion passing the 0.075 mm sieve is defined as mineral filler. All aggregate test results and samples shall be submitted to the Contracting Officer at least 30 days prior to start of construction of the test section.

2.1.1 Coarse Aggregate

Coarse aggregate shall consist of sound, tough, durable particles, free from films of material that would prevent thorough coating and bonding with the asphalt material and free from organic matter, clay or clay balls, and other deleterious substances. All individual coarse aggregate sources shall meet the following requirements:

- a. The percentage of loss shall not be greater than 40 percent after 500 revolutions when tested in accordance with ASTM C 131.
- b. The percentage of loss shall not be greater than 18 percent after five cycles when tested in accordance with ASTM C 88 using magnesium sulfate.
- c. At least 75 percent by weight of coarse aggregate shall have at least two or more fractured faces when tested in accordance with COE CRD-C 171. Fractured faces shall be produced by crushing.
- d. The particle shape shall be essentially cubical and the aggregate shall not contain more than 20% percent, by weight, of flat and elongated particles (3:1 ratio of maximum to minimum) when tested in accordance with ASTM D 4791.

2.1.2 Fine Aggregate

Fine aggregate shall consist of clean, sound, tough, durable particles. The aggregate particles shall be free from coatings of clay, silt, or any objectionable material and shall contain no clay balls. All individual fine aggregate sources shall have a sand equivalent value not less than 45 when tested in accordance with ASTM D 2419.

The fine aggregate portion of the blended aggregate shall have an uncompacted void content not less than 43.0 percent when tested in accordance with ASTM C 1252 Method A.

2.1.3 Mineral Filler

Mineral filler shall be nonplastic material meeting the requirements of ASTM D $242.\,$

2.1.4 Aggregate Gradation

The combined aggregate gradation shall conform to gradations specified in Table 2, when tested in accordance with ASTM C 136 and ASTM C 117, and shall not vary from the low limit on one sieve to the high limit on the adjacent sieve or vice versa, but grade uniformly from coarse to fine.

TABLE 2. AGGREGATE GRADATIONS

Gradation Percent Passing Sieve Size, mm by Mass 12.5 100 6.30 90-100 3.20 45-70 0.850 15-40 0.425 8-27 0.180 4-16 0.075 2-6

2.2 ASPHALT CEMENT BINDER

Asphalt cement binder shall conform to AASHTO MP 1 Performance Grade (PG) 64-28. Test data indicating grade certification shall be provided by the supplier at the time of delivery of each load to the mix plant. Copies of these certifications shall be submitted to the Contracting Officer. The supplier is defined as the last source of any modification to the binder. The Contracting Officer may sample and test the binder at the mix plant at any time before or during mix production. Samples for this verification testing shall be obtained by the Contractor in accordance with ASTM D 140 and in the presence of the Contracting Officer. These samples shall be furnished to the Contracting Officer for the verification testing, which shall be at no cost to the Contractor. Samples of the asphalt cement specified shall be submitted for approval not less than 30 days before start of the test section.

2.3 MIX DESIGN

The Contractor shall develop the mix design. The asphalt mix shall be composed of a mixture of well-graded aggregate, mineral filler if required, and asphalt material. The aggregate fractions shall be sized, handled in separate size groups, and combined in such proportions that the resulting mixture meets the grading requirements of the job mix formula (JMF). No hot-mix asphalt for payment shall be produced until a JMF has been approved. The hot-mix asphalt shall be designed using procedures contained in AI MS-02 and the criteria shown in Table 3. If the Tensile Strength Ratio (TSR) of the composite mixture, as determined by ASTM D 4867/D 4867M is less than 75, the aggregates shall be rejected or the asphalt mixture treated with an approved anti-stripping agent. The amount of anti-stripping agent added shall be sufficient to produce a TSR of not less than 75. If an antistrip agent is required, it shall be provided by the Contractor at no additional cost. Sufficient materials to produce 90 kg of blended mixture shall be provided to the Contracting Officer for verification of mix design at least 30 days prior to construction of test section. The requirements of this specification have been modified to approximate a New York State DOT Type 7

surface course. If the Contractor chooses to use the New York State DOT Type 7 mix design, the requirements of this specification shall still apply.

2.3.1 JMF Requirements

The job mix formula shall be submitted in writing by the Contractor for approval at least 30 days prior to the start of the test section and shall include as a minimum:

- a. Percent passing each sieve size.
- b. Percent of asphalt cement.
- c. Percent of each aggregate and mineral filler to be used.
- d. Asphalt performance grade.
- e. Number of blows of hammer per side of molded specimen.
- f. Laboratory mixing temperature.
- g. Lab compaction temperature.
- h. Temperature-viscosity relationship of the asphalt cement.
- i. Plot of the combined gradation on the 0.45 power gradation chart, stating the nominal maximum size.
- j. Graphical plots of stability, flow, air voids, voids in the mineral aggregate, and unit weight versus asphalt content as shown in $AI\ MS-02$.
 - k. Specific gravity and absorption of each aggregate.
 - 1. Percent natural sand.
- $\mbox{\ensuremath{\text{m}}}.$ Percent particles with 2 or more fractured faces (in coarse aggregate).
 - n. Fine aggregate angularity.
 - o. Percent flat or elongated particles (in coarse aggregate).
 - p. Tensile Strength Ratio(TSR).
 - q. Antistrip agent (if required) and amount.
 - r. List of all modifiers and amount.

TABLE 3. MARSHALL DESIGN CRITERIA

Test Property	50 Blow Mix
Stability, newtons minimum	*4450*
Flow, 0.25 mm	8-18
Air voids, percent	3-5
Percent Voids in mineral aggregate (VMA), (minimum)	
Gradation 2	16.0
TSR, minimum percent	75
Asphalt content, percent	5.7-8
Mixing and placing temperature	120-165 degrees

^{*} This is a minimum requirement. The average during construction shall be significantly higher than this number to ensure compliance with the specifications.

C

2.3.2 Adjustments to Field JMF

The Laboratory JMF for each mixture shall be in effect until a new formula is approved in writing by the Contracting Officer. Should a change in sources of any materials be made, a new laboratory jmf design shall be performed and a new JMF approved before the new material is used. The Contractor will be allowed to adjust the Laboratory JMF within the limits specified below to optimize mix volumetric properties with the approval of the Contracting Officer. Adjustments to the Laboratory JMF shall be applied to the field (plant) established JMF and limited to those values as shown. Adjustments shall be targeted to produce or nearly produce 4 percent voids total mix (VTM).

TABLE 4. FIELD (PLANT) ESTABLISHED JMF TOLERANCES

Sieves	Adjustments	(plus	or	minus),	percent
12.5 mm	3				
4.75 mm	3				
3.2 mm	3				
2.36 mm	3				
0.850 mm	3				
0.425 mm	3				
0.180 mm	3				
0.075 mm	1				

If adjustments are needed that exceed these limits, a new mix design shall be developed. Tolerances given above may permit the aggregate grading to be

^{**} Calculate VMA in accordance with AI MS-02, based on ASTM D 2726 bulk specific gravity for the aggregate.

outside the limits shown in Table 2; while not desirable, this is acceptable.

PART 3 EXECUTION

3.1 PREPARATION OF ASPHALT BINDER MATERIAL

The asphalt cement material shall be heated avoiding local overheating and providing a continuous supply of the asphalt material to the mixer at a uniform temperature. The temperature of unmodified asphalts shall be no more than 160 degrees C when added to the aggregates. Modified asphalts shall be no more than 174 degrees C when added to the aggregates.

3.2 PREPARATION OF MINERAL AGGREGATE

The aggregate for the mixture shall be heated and dried prior to mixing. No damage shall occur to the aggregates due to the maximum temperature and rate of heating used. The temperature of the aggregate and mineral filler shall not exceed 175 degrees C when the asphalt cement is added. The temperature shall not be lower than is required to obtain complete coating and uniform distribution on the aggregate particles and to provide a mixture of satisfactory workability.

3.3 PREPARATION OF HOT-MIX ASPHALT MIXTURE

The aggregates and the asphalt cement shall be weighed or metered and introduced into the mixer in the amount specified by the JMF. The combined materials shall be mixed until the aggregate obtains a uniform coating of asphalt binder and is thoroughly distributed throughout the mixture. Wet mixing time shall be the shortest time that will produce a satisfactory mixture, but no less than 25 seconds for batch plants. The wet mixing time for all plants shall be established by the Contractor, based on the procedure for determining the percentage of coated particles described in ASTM D 2489, for each individual plant and for each type of aggregate used. The wet mixing time will be set to at least achieve 95 percent of coated particles. The moisture content of all hot-mix asphalt upon discharge from the plant shall not exceed 0.5 percent by total weight of mixture as measured by ASTM D 1461.

3.4 PREPARATION OF THE UNDERLYING SURFACE

Immediately before placing the hot mix asphalt, the underlying course shall be cleaned of dust and debris. A tack coat shall be applied between layers of asphalt pavement and to all vertical PCC, pavements, or structures adjacent to the asphalt paving.

3.5 TEST SECTION

Prior to full production, the Contractor shall place a test section for each JMF used. The contractor shall construct a test section 75 - 150 m long and two paver passes wide placed for two lanes, with a longitudinal cold joint. The test section shall be of the same depth as the course which it represents. The underlying grade or pavement structure upon which the test section is to be constructed shall be the same as the remainder of the course represented by the test section. The equipment and personnel used in construction of the test section shall be the same equipment to be used on the remainder of the course represented by the test section. The test

Property

section shall be placed as part of the project pavement as approved by the Contracting Officer.

3.5.1 Sampling and Testing for Test Section

One random sample shall be taken at the plant, triplicate specimens compacted, and tested for stability, flow, and laboratory air voids. A portion of the same sample shall be tested for aggregate gradation and asphalt content. Four randomly selected cores shall be taken from the finished pavement mat, and four from the longitudinal joint, and tested for density. Random sampling shall be in accordance with procedures contained in ASTM D 3665. The test results shall be within the tolerances shown in Table 5 for work to continue. If all test results meet the specified requirements, the test section shall remain as part of the project pavement. If test results exceed the tolerances shown, the test section shall be removed and replaced at no cost to the Government and another test section shall be constructed. The test section shall be paid for with the first lot of paving.

TABLE 5. TEST SECTION REQUIREMENTS FOR MATERIAL AND MIXTURE PROPERTIES

Specification Limit

rioperty	bpecification dimit
Aggregate Gradation-Percent Passing (Individual 4.75 mm and larger 3.20, 2.36, 1.18, 0.85, 0.6,	ual Test Result) See Table 4
0.425, and 0.300 mm	See Table 4
0.18 and 0.075 mm	See Table 4
Asphalt Content, Percent (Individual Test Result)	JMF plus or minus 0.5
Laboratory Air Voids, Percent (Average of 3 specimens)	JMF plus or minus 1.0
VMA, Percent (Average of 3 specimens)	16 minimum
Stability, newtons (Average of 3 specimens)	4,450 minimum
Flow, 0.25 mm (Average of 3 specimens)	8 - 18
Mat Density, Percent of Marshall (Average of 4 Random Cores)	97.0 - 100.5
Joint Density, Percent of Marshall (Average of 4 Random Cores)	95.5 - 100.5

3.5.2 Additional Test Sections

If the initial test section should prove to be unacceptable, the necessary adjustments to the JMF, plant operation, placing procedures, and/or rolling procedures shall be made. A second test section shall then be placed. Additional test sections, as required, shall be constructed and evaluated for conformance to the specifications. Full production shall not begin until an acceptable section has been constructed and accepted.

3.6 TESTING LABORATORY

The laboratory used to develop the JMF shall meet the requirements of ASTM D 3666. A certification signed by the manager of the laboratory stating that it meets these requirements or clearly listing all deficiencies shall be submitted to the Contracting Officer prior to the start of construction. The certification shall contain as a minimum:

- a. Qualifications of personnel; laboratory manager, supervising technician, and testing technicians.
 - b. A listing of equipment to be used in developing the job mix.
 - c. A copy of the laboratory's quality control system.
- d. Evidence of participation in the AASHTO Materials Reference Laboratory (AMRL) program.

3.7 TRANSPORTING AND PLACING

3.7.1 Transporting

The hot-mix asphalt shall be transported from the mixing plant to the site in clean, tight vehicles. Deliveries shall be scheduled so that placing and compacting of mixture is uniform with minimum stopping and starting of the paver. Adequate artificial lighting shall be provided for night placements. Hauling over freshly placed material will not be permitted until the material has been compacted as specified, and allowed to cool to 60 degrees C. To deliver mix to the paver, the Contractor shall use a material transfer vehicle which shall be operated to produce continuous forward motion of the paver.

3.7.2 Placing

The mix shall be placed and compacted at a temperature suitable for obtaining density, surface smoothness, and other specified requirements. Upon arrival, the mixture shall be placed to the full width by an asphalt paver; it shall be struck off in a uniform layer of such depth that, when the work is completed, it shall have the required thickness and conform to the grade and contour indicated. The speed of the paver shall be regulated to eliminate pulling and tearing of the asphalt mat. Unless otherwise permitted, placement of the mixture shall begin along the centerline of a crowned section or on the high side of areas with a one-way slope. The mixture shall be placed in consecutive adjacent strips having a minimum width of 3 m. The longitudinal joint in one course shall offset the longitudinal joint in the course immediately below by at least 300 mm; however, the joint in the surface course shall be at the centerline of the pavement. Transverse joints in one course shall be offset by at least 3 m from transverse joints in the previous course. Transverse joints in adjacent lanes shall be offset a minimum of 3 m. On isolated areas where irregularities or unavoidable obstacles make the use of mechanical spreading and finishing equipment impractical, the mixture may be spread and luted by hand tools.

3.8 COMPACTION OF MIXTURE

After placing, the mixture shall be thoroughly and uniformly compacted by rolling. The surface shall be compacted as soon as possible without causing displacement, cracking or shoving. The sequence of rolling operations and the type of rollers used shall be at the discretion of the Contractor. The speed of the roller shall, at all times, be sufficiently slow to avoid displacement of the hot mixture and be effective in compaction. Any displacement occurring as a result of reversing the direction of the roller, or from any other cause, shall be corrected at once. Sufficient rollers shall be furnished to handle the output of the plant. Rolling shall continue until the surface is of uniform texture, true to grade and cross section, and the required field density is obtained. To prevent adhesion of the mixture to the roller, the wheels shall be kept properly moistened but excessive water will not be permitted. In areas not accessible to the roller, the mixture shall be thoroughly compacted with hand tampers. Any mixture that becomes loose and broken, mixed with dirt, contains checkcracking, or is in any way defective shall be removed full depth, replaced with fresh hot mixture and immediately compacted to conform to the surrounding area. This work shall be done at the Contractor's expense. Skin patching will not be allowed.

3.9 JOINTS

The formation of joints shall be made ensuring a continuous bond between the courses and to obtain the required density. All joints shall have the same texture as other sections of the course and meet the requirements for smoothness and grade.

3.9.1 Transverse Joints

The roller shall not pass over the unprotected end of the freshly laid mixture, except when necessary to form a transverse joint. When necessary to form a transverse joint, it shall be made by means of placing a bulkhead or by tapering the course. The tapered edge shall be cut back to its full depth and width on a straight line to expose a vertical face prior to placing material at the joint. The cutback material shall be removed from the project. In both methods, all contact surfaces shall be given a light tack coat of asphalt material before placing any fresh mixture against the joint.

3.9.2 Longitudinal Joints

Longitudinal joints which are irregular, damaged, uncompacted, cold (less than 80 degrees C at the time of placing adjacent lanes), or otherwise defective, shall be cut back a minimum of 50 mm from the edge with a cutting wheel to expose a clean, sound vertical surface for the full depth of the course. All cutback material shall be removed from the project. All contact surfaces shall be given a light tack coat of asphalt material prior to placing any fresh mixture against the joint. The Contractor will be allowed to use an alternate method if it can be demonstrated that density, smoothness, and texture can be met.

3.10 CONTRACTOR QUALITY CONTROL

3.10.1 General Quality Control Requirements

The Contractor shall develop an approved Quality Control Plan. Hot-mix asphalt for payment shall not be produced until the quality control plan has been approved. The plan shall address all elements which affect the quality of the payement including, but not limited to:

- a. Mix Design
- b. Aggregate Grading
- c. Quality of Materials
- d. Stockpile Management
- e. Proportioning
- f. Mixing and Transportation
- q. Mixture Volumetrics
- h. Moisture Content of Mixtures
- i. Placing and Finishing
- j. Joints
- k. Compaction
- 1. Surface Smoothness

3.10.2 Testing Laboratory

The Contractor shall provide a fully equipped asphalt laboratory located at the plant or job site. The laboratory shall meet the requirements as required in ASTM D 3666. The effective working area of the laboratory shall be a minimum of 14 square meters with a ceiling height of not less than 2.3 m. Lighting shall be adequate to illuminate all working areas. It shall be equipped with heating and air conditioning units to maintain a temperature of 24 degrees C plus or minus 2.3 degrees C. Laboratory facilities shall be kept clean and all equipment shall be maintained in proper working condition. The Contracting Officer shall be permitted unrestricted access to inspect the Contractor's laboratory facility, to witness quality control activities, and to perform any check testing desired. The Contracting Officer will advise the Contractor in writing of any noted deficiencies concerning the laboratory facility, equipment, supplies, or testing personnel and procedures. When the deficiencies are serious enough to adversely affect test results, the incorporation of the materials into the work shall be suspended immediately and will not be permitted to resume until the deficiencies are corrected.

3.10.3 Quality Control Testing

The Contractor shall perform all quality control tests applicable to these specifications and as set forth in the Quality Control Program. The testing

program shall include, but shall not be limited to, tests for the control of asphalt content, aggregate gradation, temperatures, aggregate moisture, moisture in the asphalt mixture, laboratory air voids, stability, flow, inplace density, grade and smoothness. A Quality Control Testing Plan shall be developed as part of the Quality Control Program.

3.10.3.1 Asphalt Content

A minimum of two tests to determine asphalt content will be performed per lot (a lot is defined in paragraph MATERIAL ACCEPTANCE AND PERCENT PAYMENT) by one of the following methods: the extraction method in accordance with ASTM D 2172, Method A or B, the ignition method in accordance with the AASHTO TP53or ASTM D 6307, or the nuclear method in accordance with ASTM D 4125, provided the nuclear gauge is calibrated for the specific mix being used. For the extraction method, the weight of ash, as described in ASTM D 2172, shall be determined as part of the first extraction test performed at the beginning of plant production; and as part of every tenth extraction test performed thereafter, for the duration of plant production. The last weight of ash value obtained shall be used in the calculation of the asphalt content for the mixture.

3.10.3.2 Gradation

Aggregate gradations shall be determined a minimum of twice per lot from mechanical analysis of recovered aggregate in accordance with ASTM D 5444. When asphalt content is determined by the nuclear method, aggregate gradation shall be determined from hot bin samples on batch plants, or from the cold feed on drum mix plants. For batch plants, aggregates shall be tested in accordance with ASTM C 136 using actual batch weights to determine the combined aggregate gradation of the mixture.

3.10.3.3 Temperatures

Temperatures shall be checked at least four times per lot, at necessary locations, to determine the temperature at the dryer, the asphalt cement in the storage tank, the asphalt mixture at the plant, and the asphalt mixture at the job site.

3.10.3.4 Aggregate Moisture

The moisture content of aggregate used for production shall be determined a minimum of once per lot in accordance with ASTM C 566.

3.10.3.5 Moisture Content of Mixture

The moisture content of the mixture shall be determined at least once per lot in accordance with ASTM D 1461 or an approved alternate procedure.

3.10.3.6 Laboratory Air Voids, Marshall Stability and Flow

Mixture samples shall be taken at least four times per lot and compacted into specimens, using 50 blows per side with the Marshall hammer as described in ASTM D 1559. After compaction, the laboratory air voids of each specimen shall be determined, as well as the Marshall stability and flow.

3.10.3.7 In-Place Density

The Contractor shall conduct any necessary testing to ensure the specified density is achieved. A nuclear gauge may be used to monitor pavement density in accordance with ASTM D 2950.

3.10.3.8 Grade and Smoothness

The Contractor shall conduct the necessary checks to ensure the grade and smoothness requirements are met in accordance with paragraph MATERIAL ACCEPTANCE AND PERCENT PAYMENT.

3.10.3.9 Additional Testing

Any additional testing, which the Contractor deems necessary to control the process, may be performed at the Contractor's option.

3.10.3.10 QC Monitoring

The Contractor shall submit all QC test results to the Contracting Officer on a daily basis as the tests are performed. The Contracting Officer reserves the right to monitor any of the Contractor's quality control testing and to perform duplicate testing as a check to the Contractor's quality control testing.

3.10.4 Sampling

When directed by the Contracting Officer, the Contractor shall sample and test any material which appears inconsistent with similar material being produced, unless such material is voluntarily removed and replaced or deficiencies corrected by the Contractor. All sampling shall be in accordance with standard procedures specified.

3.10.5 Control Charts

For process control, the Contractor shall establish and maintain linear control charts on both individual samples and the running average of last four samples for the parameters listed in Table 6, as a minimum. These control charts shall be posted as directed by the Contracting Officer and shall be kept current at all times. The control charts shall identify the project number, the test parameter being plotted, the individual sample numbers, the Action and Suspension Limits listed in Table 6 applicable to the test parameter being plotted, and the Contractor's test results. Target values from the JMF shall also be shown on the control charts as indicators of central tendency for the cumulative percent passing, asphalt content, and laboratory air voids parameters. When the test results exceed either applicable Action Limit, the Contractor shall take immediate steps to bring the process back in control. When the test results exceed either applicable Suspension Limit, the Contractor shall halt production until the problem is solved. The Contractor shall use the control charts as part of the process control system for identifying trends so that potential problems can be corrected before they occur. Decisions concerning mix modifications shall be made based on analysis of the results provided in the control charts. The Quality Control Plan shall indicate the appropriate action which shall be taken to bring the process into control when certain parameters exceed their Action Limits.

TABLE 6. ACTION AND SUSPENSION LIMITS FOR THE PARAMETERS TO BE PLOTTED ON INDIVIDUAL AND RUNNING AVERAGE CONTROL CHARTS

	Running Av Individual		Last Fou	r Samples
Action				
Suspension Action Suspension				
Parameter to be Plotted	Limit I	Limit	Limit	Limit
				
4.75 mm sieve, Cumulative % Passing, deviation from JMF target; plus or minus values	6	8	4	5
0.600 mm sieve, Cumulative % Passing, deviation from JMF target; plus or minus values	4	6	3	4
0.075 mm sieve, Cumulative % Passing, deviation from JMF target; plus or minus values	1.4	2.0	1.1	1.5
Stability, newtons (minimum) 50 Blow JMF	4450	4000	4900	4450
Flow, 0.25 mm 50 Blow JMF	8 min. 18 max.	7 min. 19 max.	9 min. 17 max.	
Asphalt content, % deviation from JMF target; plus or minus value	0.4	0.5	0.2	0.3
Laboratory Air Voids, % deviation from JMF target value	No specific action and suspension limits set since this parameter is used to determine percent payment			
In-place Mat Density, % of Marshall density	No specific action and suspension limits set since this parameter is used to determine percent payment			
<pre>In-place Joint Density, % of Marshall density</pre>	No specific action and suspension limits set since this parameter is used to determine percent payment)			

3.11 MATERIAL ACCEPTANCE

Testing for acceptability of work will be performed by an independent laboratory hired by the Contractor. Test results and payment calculations shall be forwarded daily to the Contracting Officer. Acceptance of the plant produced mix and in-place requirements will be on a lot to lot basis. A standard lot for all requirements will be equal to 8 hours of production. In order to evaluate laboratory air voids and in-place (field) density, each lot will be divided into four equal sublots.

3.11.1 Percent Payment

When a lot of material fails to meet the specification requirements for 100 percent pay as outlined in the following paragraphs, that lot shall be removed and replaced. The lot pay factor is determined by taking the lowest

computed pay factor based on either laboratory air voids, in-place density, or smoothness (each discussed below).

3.11.2 Sublot Sampling

One random mixture sample for determining laboratory air voids, theoretical maximum density, and for any additional testing the Contracting Officer desires, will be taken from a loaded truck delivering mixture to each sublot, or other appropriate location for each sublot. All samples will be selected randomly, using commonly recognized methods of assuring randomness conforming to ASTM D 3665 and employing tables of random numbers or computer programs. Laboratory air voids will be determined from three laboratory compacted specimens of each sublot sample in accordance with ASTM D 1559. The specimens will be compacted within 2 hours of the time the mixture was loaded into trucks at the asphalt plant. Samples will not be reheated prior to compaction and insulated containers will be used as necessary to maintain the temperature.

3.11.3 Additional Sampling and Testing

The Contracting Officer reserves the right to direct additional samples and tests for any area which appears to deviate from the specification requirements. The cost of any additional testing will be paid for by the Government. Testing in these areas will be in addition to the lot testing, and the requirements for these areas will be the same as those for a lot.

3.11.4 Laboratory Air Voids

Laboratory air voids will be calculated by determining the Marshall density of each lab compacted specimen using ASTM D 2726 and determining the theoretical maximum density of every other sublot sample using ASTM D 2041. Laboratory air void calculations for each sublot will use the latest theoretical maximum density values obtained, either for that sublot or the previous sublot. The mean absolute deviation of the four laboratory air void contents (one from each sublot) from the JMF air void content will be evaluated and a pay factor determined from Table 7. All laboratory air void tests will be completed and reported within 24 hours after completion of construction of each lot.

3.11.5 Mean Absolute Deviation

An example of the computation of mean absolute deviation for laboratory air voids is as follows: Assume that the laboratory air voids are determined from 4 random samples of a lot (where 3 specimens were compacted from each sample). The average laboratory air voids for each sublot sample are determined to be 3.5, 3.0, 4.0, and 3.7. Assume that the target air voids from the JMF is 4.0. The mean absolute deviation is then:

Mean Absolute Deviation = (|3.5 - 4.0| + |3.0 - 4.0| + |4.0 - 4.0| + |3.7 - 4.0|/4

$$= (0.5 + 1.0 + 0.0 + 0.3)/4 = (1.8)/4 = 0.45$$

The mean absolute deviation for laboratory air voids is determined to be 0.45. It can be seen from Table 7 that the lot's pay factor based on laboratory air voids, is 100 percent.

TABLE 7. PAY FACTOR BASED ON LABORATORY AIR VOIDS

Mean Absolute Deviation of Lab Air Voids from JMF Pay Factor, %

0.6 or less 100

Above 0.6 remove and replace

3.11.6 In-place Density

3.11.6.1 General Density Requirements

For determining in-place density, one random core shall be taken by the Contractor from the mat (interior of the lane) of each sublot, and one random core shall be taken from the joint (immediately over joint) of each sublot. Each random core shall be full thickness of the layer being placed. When a random core is less than 25 mm thick, core shall not be included in the analysis. In this case, another random core shall be taken. After air drying to a constant weight, cores obtained from the mat and from the joints shall be used for in-place density determination.

3.11.6.2 Mat and Joint Densities

The average in-place mat and joint densities are expressed as a percentage of the average Marshall density for the lot. The Marshall density for each lot will be determined as the average Marshall density of the four random samples (3 specimens compacted per sample). The average in-place mat density and joint density for a lot are determined and compared with Table 8. First, a pay factor for both mat density and joint density are determined from Table 8. The area associated with the joint is then determined and will be considered to be 3.048 m wide times the length of completed longitudinal construction joint in the lot. This area will not exceed the total lot size. The length of joint to be considered will be that length where a new lane has been placed against an adjacent lane of hot-mix asphalt pavement, either an adjacent freshly paved lane or one paved at any time previously. The area associated with the joint is expressed as a percentage of the total lot area. A weighted pay factor for the joint is determined based on this percentage (see example below). The pay factor for mat density and the weighted pay factor for joint density is compared and the lowest selected. This selected pay factor is the pay factor based on density for the lot. When the Marshall density on both sides of a longitudinal joint is different, the average of these two densities will be used as the Marshall density needed to calculate the percent joint density. All density results for a lot will be completed and reported within 24 hours after the construction of that lot.

TABLE 8. PAY FACTOR BASED ON IN-PLACE DENSITY

Average Mat Density		Average Joint Density
(4 Cores)	Pay Factor, %	(4 Cores)
97.0 or 100.5	100.0	95.5 or above
below 97.0 or above 100.5	0.0 (reject)	below 95.5

3.11.7 Grade

The final wearing surface of pavement shall conform to the elevations and cross sections shown and shall vary not more than 15 mm from the plan grade

established and approved at site of work. Finished surfaces at juncture with other pavements shall coincide with finished surfaces of abutting pavements. Deviation from the plan elevation will not be permitted in areas of pavements where closer conformance with planned elevation is required for the proper functioning of drainage and other appurtenant structures involved. The final wearing surface of the pavement will be tested for conformance with specified plan grade requirements. The grade will be determined by running lines of levels at intervals of 7.6 m, or less, longitudinally and transversely, to determine the elevation of the completed pavement surface. Within 5 working days, after the completion of a particular lot incorporating the final wearing surface, the Contracting Officer will inform the Contractor in writing, of the results of the gradeconformance tests. In areas where more than 5 percent of all the grade measurements exceed the tolerance by more than 50 percent, the Contractor shall remove the surface lift full depth; the Contractor shall then replace the lift with hot-mix asphalt to meet specification requirements, at no additional cost to the Government. Diamond grinding may be used to remove high spots to meet grade requirements. Skin patching for correcting low areas or planing or milling for correcting high areas will not be permitted.

3.11.8 Surface Smoothness

The Contractor shall use both of the following methods to test and evaluate surface smoothness of the pavement. All testing shall be performed in the presence of the Contracting Officer. Detailed notes of the results of the testing shall be kept and a copy furnished to the Government immediately after each day's testing. The profilograph method shall be used for all longitudinal and transverse testing, except where the runs would be less than 60 m in length and the ends where the straightedge shall be used. Where drawings show required deviations from a plane surface (crowns, drainage inlets, etc.), the surface shall be finished to meet the approval of the Contracting Officer.

3.11.8.1 Smoothness Requirements

a. Straightedge Testing: The finished surfaces of the pavements shall have no abrupt change of 6 mm or more, and all pavements shall be within the tolerances specified in Table 9 when checked with an approved 3.66 m straightedge.

TABLE 9. STRAIGHTEDGE SURFACE SMOOTHNESS--PAVEMENTS

Pavement Category	Direction of Testing	Tolerance, mm
All	Longitudinal	6
paved shoulders	Transverse	6

b. Profilograph Testing: The finished surfaces of the pavements shall have no abrupt change of 3 mm or more, and all pavement shall have a Profile Index not greater than specified in Table 10 when tested with an approved California-type profilograph. If the extent of the pavement in either direction is less than 60 m, that direction shall be tested by the straightedge method and shall meet requirements specified above.

TABLE 10. PROFILOGRAPH SURFACE SMOOTHNESS--PAVEMENTS

Pavement Category	Direction of Testing	Maximum Specified
		Profile Index (mm/km)
All Paved Shoulders	Longitudinal	140

3.11.8.2 Testing Method

After the final rolling, but not later than 24 hours after placement, the surface of the pavement in each entire lot shall be tested by the Contractor in such a manner as to reveal all surface irregularities exceeding the tolerances specified above. Separate testing of individual sublots is not required. If any pavement areas are ground, these areas shall be retested immediately after grinding. The entire area of the pavement shall be tested in both a longitudinal and a transverse direction on parallel lines. The transverse lines shall be 8 m or less apart, as directed. The longitudinal lines shall be at the centerline of each paving lane for lines less than 6.1 m and at the third points for lanes 6.1 m or greater. Other areas having obvious deviations shall also be tested. Longitudinal testing lines shall be continuous across all transverse joints.

- a. Straightedge Testing. The straightedge shall be held in contact with the surface and moved ahead one-half the length of the straightedge for each successive measurement. The amount of surface irregularity shall be determined by placing the freestanding (unleveled) straightedge on the pavement surface and allowing it to rest upon the two highest spots covered by its length, and measuring the maximum gap between the straightedge and the pavement surface in the area between these two high points.
- b. Profilograph Testing. Profilograph testing shall be performed using approved equipment and procedures described in CDT Test 526. The equipment shall utilize electronic recording and automatic computerized reduction of data to indicate "must-grind" bumps and the Profile Index for the pavement. The "blanking band" shall be 5 mm wide and the "bump template" shall span 25 mm with an offset of 10 mm. The profilograph shall be operated by an approved, factory-trained operator on the alignments specified above. A copy of the reduced tapes shall be furnished the Government at the end of each day's testing.

3.11.8.3 Payment Adjustment for Smoothness

Straightedge Testing - Location and deviation from straightedge for all measurements shall be recorded. When between 0.0 and 20.0 percent of all measurements made within a lot exceed the tolerance specified in paragraph Smoothness Requirements above, after any reduction of high spots or removal and replacement, the computed pay factor for that lot based on surface smoothness, will be 100 percent. When 20.0 percent or more of the measurements exceed the tolerance, the lot shall be removed and replaced at no additional cost to the Government. Regardless of the above, any small individual area 150 square meters or less with surface deviation which exceeds the tolerance given above by more than 50 percent, shall be corrected by diamond grinding to meet the specification requirements above or shall be removed and replaced at no additional cost to the Government.

- a. Profilograph Testing. Location and data from all profilograph measurements shall be recorded. When the Profile Index exceeds the tolerance by 63 mm/km or more, the lot shall be removed and replaced at no additional cost to the Government. Regardless of the above, any small individual area of 150 square meters or less with surface deviation which exceeds the tolerance given above by more than 79 mm/km or more, shall be corrected by grinding to meet the specification requirements above or shall be removed and replaced at no additional cost to the Government.
- b. Bumps ("Must Grind" Areas). Any bumps ("must grind" areas) shown on the profilograph trace which exceed 10 mm in height shall be reduced by diamond grinding until they do not exceed 7.5 mm when retested. Such grinding shall be tapered in all directions to provide smooth transitions to areas not requiring grinding. The following will not be permitted: (1) skin patching for correcting low areas, (2) planing or milling for correcting high areas. At the Contractor's option, pavement areas, including ground areas, may be rechecked with the profilograph in order to record a lower Profile Index.

-- End Of Section --

SECTION TABLE OF CONTENTS DIVISION 02 - SITE WORK

SECTION 02722 AGGREGATE BASE COURSE

PART 1 GENERAL

- 1.1 REFERENCES
- 1.2 DEFINITIONS
 - 1.2.1 Aggregate Base Course
 - 1.2.2 Degree of Compaction
- 1.3 SUBMITTALS
- 1.4 SAMPLING AND TESTING
 - 1.4.1 Sampling
 - 1.4.2 Tests
 - 1.4.2.1 Sieve Analysis
 - 1.4.2.2 Liquid Limit and Plasticity Index
 - 1.4.2.3 Moisture-Density Determinations
 - 1.4.2.4 Field Density Tests
 - 1.4.2.5 Wear Test
 - 1.4.3 Testing Frequency
 - 1.4.3.1 Initial Tests
 - 1.4.3.2 In Place Tests
 - 1.4.4 Approval of Material
- 1.5 WEATHER LIMITATIONS
- 1.6 EQUIPMENT AND TOOLS

PART 2 PRODUCTS

- 2.1 AGGREGATES
 - 2.1.1 Coarse Aggregate
 - 2.1.1.1 Aggregate Base Course
 - 2.1.2 Fine Aggregate
 - 2.1.2.1 Aggregate Base Course
 - 2.1.3 Gradation Requirements
 - 2.1.4 Liquid Limit and Plasticity Index

PART 3 EXECUTION

- 3.1 GENERAL REQUIREMENTS
- 3.2 STOCKPILING MATERIAL
- 3.3 PREPARATION OF UNDERLYING COURSE
- 3.4 INSTALLATION
 - 3.4.1 Mixing the Materials
 - 3.4.2 Placing
 - 3.4.3 Grade Control
 - 3.4.4 Edges of Base Course
 - 3.4.5 Compaction
 - 3.4.6 Thickness
 - 3.4.7 Finishing
 - 3.4.8 Smoothness
- 3.5 TRAFFIC
- 3.6 MAINTENANCE
- 3.7 DISPOSAL OF UNSATISFACTORY MATERIALS

SECTION 02722

AGGREGATE BASE COURSE

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

Soil Compaction Test

AASHTO T 180	(1997) Moisture-Density Relations of Soils
	Using a 4.54-kg (10-lb) Rammer and an 457 mm (18-in) Drop
AASHTO T 224	(1996) Correction for Coarse Particles in the

ASTM INTERNATIONAL (ASTM)

ASTM C 117	(1995) Materials Finer Than 75 micrometer (No. 200) Sieve in Mineral Aggregates by Washing
ASTM C 127	(2001) Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate
ASTM C 128	(1997) Specific Gravity and Absorption of Fine Aggregate
ASTM C 131	(2001) Resistance to Degradation of Small- Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine
ASTM C 136	(2001) Sieve Analysis of Fine and Coarse Aggregates
ASTM D 75	(1987; R 1997) Sampling Aggregates
ASTM D 422	(1963; R 1998) Particle-Size Analysis of Soils
ASTM D 1556	(2000) Density and Unit Weight of Soil in Place by the Sand-Cone Method
ASTM D 1557	(1998) Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/cu. ft. (2,700 kN-m/cu.m.))
ASTM D 2167	(1994) Density and Unit Weight of Soil in Place by the Rubber Balloon Method

ASTM D 2487	(2000) Classification of Soils for Engineering Purposes (Unified Soil Classification System)
ASTM D 2922	(2001) Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)
ASTM D 3017	(2001) Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth)
ASTM D 4318	(2000) Liquid Limit, Plastic Limit, and Plasticity Index of Soils
ASTM E 11	(1995) Wire-Cloth Sieves for Testing Purposes

1.2 DEFINITIONS

For the purposes of this specification, the following definitions apply.

1.2.1 Aggregate Base Course

Aggregate base course (ABC) is well graded, durable aggregate uniformly moistened and mechanically stabilized by compaction.

1.2.2 Degree of Compaction

Degree of compaction required, except as noted in the second sentence, is expressed as a percentage of the maximum density obtained by the test procedure presented in ASTM D 1557abbreviated as a percent of laboratory maximum density. Since ASTM D 1557 applies only to soils that have 30 percent or less by weight of their particles retained on the 19 mm sieve, the degree of compaction for material having more than 30 percent by weight of their particles retained on the 19 mm sieve shall be expressed as a percentage of the maximum density in accordance with AASHTO T 180 Method D and corrected with AASHTO T 224. To maintain the same percentage of coarse material, the "remove and replace" procedure as described in NOTE 8 in Paragraph 7.2 of AASHTO T 180 shall be used.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Equipment, and Tools; G, RE

List of proposed equipment to be used in performance of construction work, including descriptive data.

Waybills and Delivery Tickets

Copies of waybills and delivery tickets during the progress of the work. Before the final statement is allowed, the Contractor

shall file certified waybills and certified delivery tickets for all aggregates actually used.

SD-06 Test Reports

Sampling and testing; G, RE Field Density Tests; G, RE

Calibration curves and related test results prior to using the device or equipment being calibrated. Copies of field test results within 24 hours after the tests are performed. Certified copies of test results for approval not less than 30 days before material is required for the work.

1.4 SAMPLING AND TESTING

Sampling and testing shall be the responsibility of the Contractor. Sampling and testing shall be performed by a testing laboratory approved in accordance with Section 01451 CONTRACTOR QUALITY CONTROL. Work requiring testing will not be permitted until the testing laboratory has been inspected and approved. The materials shall be tested to establish compliance with the specified requirements; testing shall be performed at the specified frequency. The Contracting Officer may specify the time and location of the tests. Copies of test results shall be furnished to the Contracting Officer within 24 hours of completion of the tests.

1.4.1 Sampling

Samples for laboratory testing shall be taken in conformance with ASTM D 75. When deemed necessary, the sampling will be observed by the Contracting Officer.

1.4.2 Tests

The following tests shall be performed in conformance with the applicable standards listed.

1.4.2.1 Sieve Analysis

Sieve analysis shall be made in conformance with ASTM C 117 and ASTM C 136. Sieves shall conform to ASTM E 11. Particle-size analysis of the soils shall also be completed in conformance with ASTM D 422.

1.4.2.2 Liquid Limit and Plasticity Index

Liquid limit and plasticity index shall be determined in accordance with ${\tt ASTM}$ D 4318.

1.4.2.3 Moisture-Density Determinations

The maximum density and optimum moisture content shall be determined in accordance with ASTM D 1557 or AASHTO T 180, Method D and corrected with AASHTO T 224. To maintain the same percentage of coarse material, the "remove and replace" procedure as described in the NOTE 8 in Paragraph 7.2 of AASHTO T 180 shall be used.

1.4.2.4 Field Density Tests

Density shall be field measured in accordance with ASTM D 1556, ASTM D 2167, or ASTM D 2922. For the method presented in ASTM D 1556 the base plate as shown in ASTM D 1556, Figure 1, shall be used. For the method presented in ASTM D 2922 the calibration curves shall be checked and adjusted if necessary using only the sand cone method as described in paragraph Calibration, of the ASTM publication. Tests performed in accordance with ASTM D 2922 result in a wet unit weight of soil and when using this method, ASTM D 3017 shall be used to determine the moisture content of the soil. The calibration curves furnished with the moisture gauges shall also be checked along with density calibration checks as described in ASTM D 3017. The calibration checks of both the density and moisture gauges shall be made by the prepared containers of material method, as described in paragraph Calibration of ASTM D 2922, on each different type of material being tested at the beginning of a job and at intervals as directed.

1.4.2.5 Wear Test

Wear tests shall be made on ABC course material in conformance with ASTM C 131.

1.4.3 Testing Frequency

1.4.3.1 Initial Tests

One of each of the following tests shall be performed on the proposed material prior to commencing construction to demonstrate that the proposed material meets all specified requirements when furnished. If materials from more than one source are going to be utilized, this testing shall be completed for each source.

- a. Sieve Analysis including 0.02 mm size material.
- b. Liquid limit and plasticity index.
- c. Moisture-density relationship.
- d. Wear.

1.4.3.2 In Place Tests

Each of the following tests shall be performed on samples taken from the placed and compacted ABC. Samples shall be taken and tested at the rates indicated.

- a. Density tests shall be performed on every lift of material placed and at a frequency of one set of tests for every 700 square meters, or portion thereof, of completed area.
- b. Sieve Analysis including $0.02\ mm$ size material shall be performed for every $500\ metric$ tons, or portion thereof, of material placed.
- c. Liquid limit and plasticity index tests shall be performed at the same frequency as the sieve analysis.

1.4.4 Approval of Material

The source of the material shall be selected 60 days prior to the time the material will be required in the work. Tentative approval of material will be based on initial test results. Final approval of the materials will be based on sieve analysis, liquid limit, and plasticity index tests performed on samples taken from the completed and fully compacted ABC.

1.5 WEATHER LIMITATIONS

Construction shall be done when the atmospheric temperature is above 2 degrees C. When the temperature falls below 2 degrees C, the Contractor shall protect all completed areas by approved methods against detrimental effects of freezing. Completed areas damaged by freezing, rainfall, or other weather conditions shall be corrected to meet specified requirements.

1.6 EQUIPMENT AND TOOLS

All equipment and tools used in the performance of the work will be subject to approval before the work is started and shall be maintained in satisfactory working condition at all times. The equipment shall be adequate and shall have the capability of producing the required compaction, meeting grade controls, thickness control, and smoothness requirements as set forth herein.

PART 2 PRODUCTS

2.1 AGGREGATES

Aggregates shall be obtained from off site sources. The ABC shall consist of clean, sound, durable particles of crushed stone, crushed gravel, angular sand, or other approved material. ABC shall be free of lumps of clay, organic matter, and other objectionable materials or coatings. The portion retained on the 4.75 mm sieve shall be known as coarse aggregate; that portion passing the 4.75 mm sieve shall be known as fine aggregate.

2.1.1 Coarse Aggregate

Coarse aggregates shall be angular particles of uniform density. When the coarse aggregate is supplied from more than one source, aggregate from each source shall meet the specified requirements and shall be stockpiled separately.

- a. Crushed Gravel: Crushed gravel shall be manufactured by crushing gravels, and shall meet all the requirements specified below.
- b. Crushed Stone: Crushed stone shall consist of freshly mined quarry rock, and shall meet all the requirements specified below.

2.1.1.1 Aggregate Base Course

ABC coarse aggregate shall not show more than 50 percent loss when subjected to the Los Angeles abrasion test in accordance with ASTM C 131. The amount of flat and elongated particles shall not exceed 30 percent. A flat particle is one having a ratio of width to thickness greater than 3; an elongated particle is one having a ratio of length to width greater than 3. In the portion retained on each sieve specified, the crushed aggregates

shall contain at least 50 percent by weight of crushed pieces having two or more freshly fractured faces with the area of each face being at least equal to 75 percent of the smallest midsectional area of the piece. When two fractures are contiguous, the angle between planes of the fractures must be at least 30 degrees in order to count as two fractured faces. Crushed gravel shall be manufactured from gravel particles 50 percent of which, by weight, are retained on the maximum size sieve listed in TABLE 1.

2.1.2 Fine Aggregate

Fine aggregates shall be angular particles of uniform density. When the fine aggregate is supplied from more than one source, aggregate from each source shall meet the specified requirements.

2.1.2.1 Aggregate Base Course

ABC fine aggregate shall consist of screenings, angular sand, or other finely divided mineral matter processed or naturally combined with the coarse aggregate.

2.1.3 Gradation Requirements

The specified gradation requirements shall apply to the completed base course. The aggregates shall have a maximum size of 37.5 mm and shall be continuously well graded within the limits specified in TABLE 1. Sieves shall conform to ASTM E 11.

TABLE 1. GRADATION OF AGGREGATES

50.0 mm	
37.5 mm	100
25.0 mm	60-100
12.5 mm	30-65
4.75 mm	20-50
2.00 mm	15-40
0.425 mm	5-25
0.075 mm	0-8

NOTE 1: Particles having diameters less than 0.02 mm shall not be in excess of 3 percent by weight of the total sample tested.

NOTE 2: The values are based on aggregates of uniform specific gravity. If materials from different sources are used for the coarse and fine aggregates, they shall be tested in accordance with ASTM C 127 and ASTM C 128 to determine their specific gravities. If the specific gravities vary by more than 10 percent, the percentages passing the various sieves shall be corrected as directed by the Contracting Officer.

2.1.4 Liquid Limit and Plasticity Index

Liquid limit and plasticity index requirements shall apply to the completed course and shall also apply to any component that is blended to meet the required gradation. The portion of any component or of the completed course

passing the 0.425 mm sieve shall be either nonplastic or have a liquid limit not greater than 25 and a plasticity index not greater than 5.

PART 3 EXECUTION

3.1 GENERAL REQUIREMENTS

When the ABC is constructed in more than one layer, the previously constructed layer shall be cleaned of loose and foreign matter by sweeping with power sweepers or power brooms, except that hand brooms may be used in areas where power cleaning is not practicable. Adequate drainage shall be provided during the entire period of construction to prevent water from collecting or standing on the working area. Line and grade stakes shall be provided as necessary for control. Grade stakes shall be in lines parallel to the centerline of the area under construction and suitably spaced for string lining.

3.2 STOCKPILING MATERIAL

Prior to stockpiling of material, storage sites shall be cleared and leveled by the Contractor. All materials, including approved material available from excavation and grading, shall be stockpiled in the manner and at the locations designated. Aggregates shall be stockpiled on the cleared and leveled areas designated by the Contracting Officer to prevent segregation. Materials obtained from different sources shall be stockpiled separately.

3.3 PREPARATION OF UNDERLYING COURSE

Prior to constructing the ABC, the underlying course or subgrade shall be cleaned of all foreign substances. At the time of construction of the ABC, the underlying course shall contain no frozen material. The surface of the underlying course or subgrade shall meet specified compaction and surface tolerances. The underlying course shall conform to Section 02300 EARTHWORK or Section 02721 SUBBASE COURSES. Ruts or soft yielding spots in the underlying courses, areas having inadequate compaction, and deviations of the surface from the requirements set forth herein shall be corrected by loosening and removing soft or unsatisfactory material and by adding approved material, reshaping to line and grade, and recompacting to specified density requirements. For cohesionless underlying courses containing sands or gravels, as defined in ASTM D 2487, the surface shall be stabilized prior to placement of the ABC. Stabilization shall be accomplished by mixing ABC into the underlying course and compacting by approved methods. The stabilized material shall be considered as part of the underlying course and shall meet all requirements of the underlying course. The finished underlying course shall not be disturbed by traffic or other operations and shall be maintained by the Contractor in a satisfactory condition until the ABC is placed.

3.4 INSTALLATION

3.4.1 Mixing the Materials

The coarse and fine aggregates shall be mixed in a stationary plant, or in a traveling plant or bucket loader on an approved paved working area. The Contractor shall make adjustments in mixing procedures or in equipment as directed to obtain true grades, to minimize segregation or degradation, to

obtain the required water content, and to insure a satisfactory ABC meeting all requirements of this specification.

3.4.2 Placing

The mixed material shall be placed on the prepared subgrade or subbase in layers of uniform thickness with an approved spreader. When a compacted layer 150 mm or less in thickness is required, the material shall be placed in a single layer. When a compacted layer in excess of 150 mm is required, the material shall be placed in layers of equal thickness. No layer shall exceed 150 mm or less than 75mm when compacted. The layers shall be so placed that when compacted they will be true to the grades or levels required with the least possible surface disturbance. Where the ABC is placed in more than one layer, the previously constructed layers shall be cleaned of loose and foreign matter by sweeping with power sweepers, power brooms, or hand brooms, as directed. Such adjustments in placing procedures or equipment shall be made as may be directed to obtain true grades, to minimize segregation and degradation, to adjust the water content, and to insure an acceptable ABC.

3.4.3 Grade Control

The finished and completed ABC shall conform to the lines, grades, and cross sections shown. Underlying material(s) shall be excavated and prepared at sufficient depth for the required ABC thickness so that the finished ABC with the subsequent surface course will meet the designated grades.

3.4.4 Edges of Base Course

Approved fill material shall be placed along the outer edges of ABC in sufficient quantities to compact to the thickness of the course being constructed, or to the thickness of each layer in a multiple layer course, allowing in each operation at least a 600 mm width of this material to be rolled and compacted simultaneously with rolling and compacting of each layer of ABC. If this base course material is to be placed adjacent to another pavement section, then the layers for both of these sections shall be placed and compacted along this edge at the same time.

3.4.5 Compaction

Each layer of the ABC shall be compacted as specified with approved compaction equipment. Water content shall be maintained during the compaction procedure to within plus or minus 2 percent of the optimum water content determined from laboratory tests as specified in paragraph SAMPLING AND TESTING. Rolling shall begin at the outside edge of the surface and proceed to the center, overlapping on successive trips at least one-half the width of the roller. Alternate trips of the roller shall be slightly different lengths. Speed of the roller shall be such that displacement of the aggregate does not occur. In all places not accessible to the rollers, the mixture shall be compacted with hand-operated power tampers. Compaction shall continue until each layer has a degree of compaction that is at least 100 percent of laboratory maximum density through the full depth of the layer. The Contractor shall make such adjustments in compacting or finishing procedures as may be directed to obtain true grades, to minimize segregation and degradation, to reduce or increase water content, and to ensure a satisfactory ABC. Any materials that are found to be

unsatisfactory shall be removed and replaced with satisfactory material or reworked, as directed, to meet the requirements of this specification.

3.4.6 Thickness

Compacted thickness of the aggregate course shall be as indicated. No individual layer shall exceed 150 mm nor be less than 75 mm in compacted thickness. The total compacted thickness of the ABC course shall be within 13 mm of the thickness indicated. Where the measured thickness is more than 13 mm deficient, such areas shall be corrected by scarifying, adding new material of proper gradation, reblading, and recompacting as directed. Where the measured thickness is more than 13 mm thicker than indicated, the course shall be considered as conforming to the specified thickness requirements. Average job thickness shall be the average of all thickness measurements taken for the job, but shall be within 6 mm of the thickness indicated. The total thickness of the ABC course shall be measured at intervals in such a manner as to ensure one measurement for each 500 square meters of base course. Measurements shall be made in 75 mm diameter test holes penetrating the base course.

3.4.7 Finishing

The surface of the top layer of ABC shall be finished after final compaction by cutting any overbuild to grade and rolling with a steel-wheeled roller. Thin layers of material shall not be added to the top layer of base course to meet grade. If the elevation of the top layer of ABC is 13 mm or more below grade, then the top layer should be scarified to a depth of at least 75 mm and new material shall be blended in and compacted to bring to grade. Adjustments to rolling and finishing procedures shall be made as directed to minimize segregation and degradation, obtain grades, maintain moisture content, and insure an acceptable base course. Should the surface become rough, corrugated, uneven in texture, or traffic marked prior to completion, the unsatisfactory portion shall be scarified, reworked and recompacted or it shall be replaced as directed.

3.4.8 Smoothness

The surface of the top layer shall show no deviations in excess of 6 mm when tested with a 3.66 meter straightedge. Measurements shall be taken in successive positions parallel to the centerline of the area to be paved. Measurements shall also be taken perpendicular to the centerline at 15 meter intervals. Deviations exceeding this amount shall be corrected by removing material and replacing with new material, or by reworking existing material and compacting it to meet these specifications.

3.5 TRAFFIC

Traffic shall not be allowed on the completed ABC course.

3.6 MAINTENANCE

The ABC shall be maintained in a satisfactory condition until the full pavement section is completed and accepted. Maintenance shall include immediate repairs to any defects and replacing any area that has been contaminated with fines. Maintenance shall be repeated as often as necessary to keep the area intact and within the requirements of this specification. Any ABC that is not paved over prior to the onset of winter,

shall be retested to verify that it still complies with the requirements of this specification. Any area of ABC that is damaged shall be reworked or replaced as necessary to comply with this specification.

3.7 DISPOSAL OF UNSATISFACTORY MATERIALS

Any unsuitable materials that must be removed shall be disposed of in waste disposal areas indicated. No additional payments will be made for materials that must be replaced.

-- End Of Section --

SECTION TABLE OF CONTENTS

DIVISION 02 - SITE WORK

SECTION 02721

SUBBASE COURSES

PART 1 GENERAL

- 1.1 REFERENCES
- 1.2 SUBMITTALS
- 1.3 DEGREE OF COMPACTION
- 1.4 SAMPLING AND TESTING
 - 1.4.1 Sampling
 - 1.4.2 Tests
 - 1.4.2.1 Sieve Analysis
 - 1.4.2.2 Liquid Limit and Plasticity Index
 - 1.4.2.3 Moisture-Density Determinations
 - 1.4.2.4 Density Tests
 - 1.4.2.5 Wear Test
 - 1.4.3 Testing Frequency
 - 1.4.3.1 Initial Tests
 - 1.4.3.2 In-Place Tests
 - 1.4.4 Approval of Material
- 1.5 WEATHER LIMITATIONS
- 1.6 EQUIPMENT

PART 2 PRODUCTS

- 2.1 MATERIALS
 - 2.1.1 Subbase Course

PART 3 EXECUTION

- 3.1 STOCKPILING MATERIAL
- 3.2 PREPARATION OF UNDERLYING MATERIAL
- 3.3 GRADE CONTROL
- 3.4 MIXING AND PLACING MATERIALS
- 3.5 LAYER THICKNESS
- 3.6 COMPACTION
- 3.7 EDGES
- 3.8 SMOOTHNESS TEST
- 3.9 THICKNESS CONTROL
- 3.10 MAINTENANCE
- -- End of Section Table of Contents --

SECTION 02721

SUBBASE COURSES

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

AASHTO T 180	(1997) Moisture-Density Relations of Soils Using a 4.54-kg (10-lb) Rammer and an 457 mm (18-in) Drop
AASHTO T 224	(1996) Correction for Coarse Particles in the Soil Compaction Test
ASTM INTERNATIONAL (.	ASTM)

rional (ASTM)

ASTM C 117	(1995) Materials Finer Than 75 micrometer (No. 200) Sieve in Mineral Aggregates by Washing
ASTM C 131	(2001) Resistance to Degradation of Small- Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine
ASTM C 136	(2001) Sieve Analysis of Fine and Coarse Aggregates
ASTM D 75	(1987; R 1997) Sampling Aggregates
ASTM D 422	(1963; R 1998) Particle-Size Analysis of Soils
ASTM D 1556	(2000) Density and Unit Weight of Soil in Place by the Sand-Cone Method
ASTM D 1557	(1998) Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/cu. ft. (2,700 kN-m/cu.m.))
ASTM D 2167	(1994) Density and Unit Weight of Soil in Place by the Rubber Balloon Method
ASTM D 2922	(2001) Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)
ASTM D 3017	(2001) Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth)

ASTM D 4318 (2000) Liquid Limit, Plastic Limit, and Plasticity Index of Soils

ASTM E 11 (1995) Wire-Cloth Sieves for Testing Purposes

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Equipment; G, RE

List of proposed equipment to be used in performance of construction work, including descriptive data.

Waybills and Delivery Tickets

Copies of waybills and delivery tickets during the progress of the work. Certified waybills and delivery tickets for all aggregates actually used.

SD-06 Test Reports

Sampling and Testing; G, RE

Copies of initial and in-place test results.

1.3 DEGREE OF COMPACTION

Degree of compaction is a percentage of the maximum density obtained by the test procedure presented in ASTM D 1557 or AASHTO T 180, Method D, and corrected with AASHTO T 224. To maintain the same percentage of course material, the "remove and replace" procedure as described in AASHTO T 180, paragraph 7.2, Note 8, shall be used.

1.4 SAMPLING AND TESTING

Sampling and testing shall be the responsibility of the Contractor. Sampling and testing shall be performed by an approved testing laboratory in accordance with Section 01451 CONTRACTOR QUALITY CONTROL. Tests shall be performed at the specified frequency. No work requiring testing will be permitted until the testing laboratory has been inspected and approved. The materials shall be tested to establish compliance with the specified requirements.

1.4.1 Sampling

Samples for laboratory testing shall be taken in conformance with ASTM D 75. When deemed necessary, the sampling will be observed by the Contracting Officer.

1.4.2 Tests

1.4.2.1 Sieve Analysis

Sieve analysis shall be made in conformance with ASTM C 117 and ASTM C 136 and ASTM D 422. Sieves shall conform to ASTM E 11.

1.4.2.2 Liquid Limit and Plasticity Index

Liquid limit and plasticity index shall be determined in accordance with ${\tt ASTM}$ D 4318.

1.4.2.3 Moisture-Density Determinations

The maximum density and optimum moisture shall be determined in accordance with ASTM D 1557 or AASHTO T 180, Method D as specified in 1.4 degree of compaction.

1.4.2.4 Density Tests

Density shall be field measured in accordance with ASTM D 1556. The base plate, as shown in ASTM D 1556 shall be used. In ASTM D 2922, the calibration curves shall be checked and adjusted, if necessary, using only the sand cone method as described in paragraph Calibration, of the ASTM publication. Tests performed in accordance with ASTM D 2922 result in a wet unit weight of soil and, when using this method, ASTM D 3017 shall be used to determine the moisture content of the soil. The calibration curves furnished with the moisture gauges shall also be checked along with density calibration checks as described in ASTM D 3017. The calibration checks of both the density and moisture gauges shall be made by the prepared containers of material method, as described in paragraph Calibration, in ASTM D 2922, on each different type of material to be tested at the beginning of a job and at intervals as directed.

1.4.2.5 Wear Test

Wear tests shall be made on subbase course material in conformance with ASTM C 131.

1.4.3 Testing Frequency

1.4.3.1 Initial Tests

One of each of the following tests shall be performed on the proposed material prior to commencing construction to demonstrate that the proposed material meets all specified requirements prior to installation.

- a. Sieve Analysis including 0.02 mm size material
- b. Liquid limit and plasticity index moisture-density relationship
- c. Wear

1.4.3.2 In-Place Tests

One of each of the following tests shall be performed on samples taken from the placed and compacted subbase course. Samples shall be taken for each 1,000 square meters of each layer of material placed in each area.

- a. Sieve Analysis including 0.02 mm size material
- b. Field Density
- c. Moisture liquid limit and plasticity index

1.4.4 Approval of Material

The source of the material shall be selected 60 days prior to the time the material will be required in the work. Approval of the materials will be based on tests for gradation, liquid limit, and plasticity index performed on samples taken from the completed and compacted subbase course.

1.5 WEATHER LIMITATIONS

Construction shall be done when the atmospheric temperature is above 2 degrees C. When the temperature falls below 2 degrees C, the Contractor shall protect all completed areas by approved methods against detrimental effects of freezing. Completed areas damaged by freezing, rainfall, or other weather conditions shall be corrected to meet specified requirements.

1.6 EQUIPMENT

All plant, equipment, and tools used in the performance of the work will be subject to approval before the work is started and shall be maintained in satisfactory working condition at all times. The equipment shall be adequate and shall have the capability of producing the required compaction, meeting grade controls, thickness control, and smoothness requirements as set forth herein.

PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 Subbase Course

Aggregates shall consist of crushed stone, gravel, sand, or other sound, durable, approved materials processed and blended or naturally combined. Aggregates shall be durable and sound, free from lumps and balls of clay, organic matter, objectionable coatings, and other foreign material. Material retained on the 4.75 mm sieve shall have a percentage of wear not to exceed 50 percent after 500 revolutions when tested as specified in ASTM C 131. Aggregate shall be reasonably uniform in density and quality. Aggregates shall have a maximum size of 75 mm and shall be within the limits specified as follows:

Maximum Allowable Percentage by Weight Passing Square-Mesh Sieve

Sieve Designation	No. 1	
2 mm	50	
0.075 mm	15	

Particles having diameters less than 0.02 mm shall not be in excess of 3 percent by weight of the total sample tested as determined in accordance with ASTM D 422. The portion of any blended component and of the completed course passing the 0.425 mm shall be either nonplastic or shall have a liquid limit not greater than 25 and a plasticity index not greater than 5.

PART 3 EXECUTION

3.1 STOCKPILING MATERIAL

Prior to stockpiling of material, storage sites shall be cleared and leveled by the Contractor. All materials, including approved material available from excavation and grading, shall be stockpiled in the manner and at the locations designated. Aggregates shall be stockpiled on the cleared and leveled areas designated by the Contracting Officer so as to prevent segregation. Materials obtained from different sources shall be stockpiled separately.

3.2 PREPARATION OF UNDERLYING MATERIAL

Prior to constructing the subbase course, the underlying course or subgrade shall be cleaned of all foreign substances. The surface of the underlying course or subgrade shall meet specified compaction and surface tolerances. Ruts, or soft yielding spots, in the underlying courses, subgrade areas having inadequate compaction, and deviations of the surface from the specified requirements, shall be corrected by loosening and removing soft or unsatisfactory material and by adding approved material, reshaping to line and grade, and recompacting to specified density requirements. The finished underlying course shall not be disturbed by traffic or other operations and shall be maintained by the Contractor in a satisfactory condition until the subbase course is placed.

3.3 GRADE CONTROL

The finished and completed subbase course shall conform to the lines, grades, and cross sections shown. The lines, grades, and cross sections shown shall be maintained by means of line and grade stakes placed by the Contractor at the work site.

3.4 MIXING AND PLACING MATERIALS

The materials shall be mixed and placed to obtain uniformity of the subbase material at the water content specified. The Contractor shall make such adjustments in mixing or placing procedures or in equipment as may be directed to obtain the true grades, to minimize segregation and degradation, to reduce or accelerate loss or increase of water, and to insure a satisfactory subbase course.

3.5 LAYER THICKNESS

The compacted thickness of the completed course shall be as indicated. When a compacted layer of 150 mm is specified, the material may be placed in a single layer; when a compacted thickness of more than 150 mm is required, no layer shall exceed 150 mm nor be less than 75 mm when compacted.

3.6 COMPACTION

Each layer of the subbase course shall be compacted as specified with approved compaction equipment. Water content shall be maintained during the compaction procedure to within plus or minus 2 percent of optimum water content, as determined from laboratory tests, as specified in paragraph SAMPLING AND TESTING. In all places not accessible to the rollers, the mixture shall be compacted with hand-operated power tampers. Compaction shall continue until each layer is compacted through the full depth to at least 95 percent of laboratory maximum density. The Contractor shall make such adjustments in compacting or finishing procedures as may be directed to obtain true grades, to minimize segregation and degradation, to reduce or increase water content, and to ensure a satisfactory subbase course. Any materials that are found to be unsatisfactory shall be removed and replaced with satisfactory material or reworked, as directed, to meet the requirements of this specification.

3.7 EDGES

Approved material shall be placed along the edges of the subbase course in such quantity as will compact to the thickness of the course being constructed. When the course is being constructed in two or more layers, at least a 300 mm width of the shoulder shall be rolled and compacted simultaneously with the rolling and compacting of each layer of the subbase course, as directed.

3.8 SMOOTHNESS TEST

The surface of each layer shall not show deviations in excess of 6 mm when tested with a 3.6 m straightedge applied parallel with and at right angles to the centerline of the area to be paved. Deviations exceeding this amount shall be corrected by removing material, replacing with new material, or reworking existing material and compacting, as directed.

3.9 THICKNESS CONTROL

The completed thickness of the subbase course shall be in accordance with the thickness and grade indicated on the drawings. The thickness of each course shall be measured at intervals providing at least one measurement for each 700 square meters or part thereof of subbase course. The thickness measurement shall be made by test holes, at least 75 mm in diameter through the course. The completed subbase course shall not be more than 13 mm deficient in thickness nor more than 13 mm above or below the established grade. Where any of these tolerances are exceeded, the Contractor shall correct such areas by scarifying, adding new material of proper gradation or removing material, and compacting, as directed. Where the measured thickness is 13 mm or more thicker than shown, the course will be considered as conforming with the specified thickness requirements plus 13 mm. The average job thickness shall be the average of the job measurements as specified above but within 6 mm of the thickness shown.

3.10 MAINTENANCE

The subbase course shall be maintained in a satisfactory condition until accepted.

-- End Of Section --

SECTION TABLE OF CONTENTS

DIVISION 02 - SITE WORK

SECTION 02753

CONCRETE PAVEMENT FOR AIRFIELDS AND OTHER HEAVY-DUTY PAVEMENTS

PART 1 GENERAL

- 1.1 REFERENCES
- 1.2 SYSTEM DESCRIPTION
- 1.3 SUBMITTALS
- 1.4 MEASUREMENT AND PAYMENT
 - 1.4.1 Measurements
 - 1.4.1.1 Concrete
 - 1.4.1.2 Mixture Proportions By Contractor
 - 1.4.1.3 Steel Reinforcement
 - 1.4.1.4 Dowels and Epoxy Materials
 - 1.4.1.5 Joint Materials
 - 1.4.2 Payments
 - 1.4.2.1 Concrete
- 1.5 ACCEPTABILITY OF WORK AND PAYMENT ADJUSTMENTS
 - 1.5.1 Pavement Lots
 - 1.5.2 Acceptance of Lots
 - 1.5.3 Evaluation
 - 1.5.4 Additional Sampling and Testing
 - 1.5.5 Air Content Tests
 - 1.5.6 Slump Tests
 - 1.5.7 Surface Smoothness
 - 1.5.7.1 Smoothness Requirements
 - 1.5.7.2 Testing Method
 - 1.5.7.3 Payment Adjustment for Smoothness
 - 1.5.8 Edge Slump and Joint Face Deformation

 - 1.5.8.1 Edge Slump 1.5.8.2 Joint Face Deformation
 - 1.5.8.3 Determination of Edge Slump
 - 1.5.8.4 Excessive Edge Slump
 - 1.5.9 Plan Grade
 - 1.5.9.1 Plan Grade Tolerances
 - 1.5.9.2 Grade Conformance Tests
 - 1.5.10 Flexural Strength
 - 1.5.10.1 Sampling and Testing
 - 1.5.10.2 Computations
 - 1.5.11 Thickness
 - 1.5.11.1 Drilling, Measuring, and Computations
 - 1.5.11.2 Evaluation and Payment Adjustment for Thickness
 - 1.5.12 Partial Lots
 - Areas Defective in Plan Grade or Smoothness 1.5.13
- 1.6 ACCEPTABILITY OF WORK
- 1.7 PRECONSTRUCTION TESTING OF MATERIALS
 - 1.7.1 Aggregates
 - 1.7.2 Chemical Admixtures
 - 1.7.3 Curing Compound
 - 1.7.4 Epoxy-Resin Material
 - 1.7.5 Cements and Pozzolans

1.8 TESTING BY CONTRACTOR DURING CONSTRUCTION 1.8.1 Contractor's Testing Requirements 1.8.2 Cementitious Materials 1.9 QUALIFICATIONS 1.10 TEST SECTION 1.11 DELIVERY, STORAGE, AND HANDLING OF MATERIALS 1.11.1 Bulk Cementitious Materials 1.11.1.1 Transportation 1.11.1.2 Storage Requirements 1.11.1.3 Separation of Materials 1.11.2 Aggregate Materials 1.11.2.1 Storage 1.11.2.2 Handling 1.11.3 Other Materials 1.12 EQUIPMENT 1.12.1 Batching and Mixing Plant 1.12.1.1 Location of Batching and Mixing Plant 1.12.1.2 Type and Capacity of Batching and Mixing Plant 1.12.1.3 Equipment Requirements 1.12.1.4 Scales 1.12.1.5 Batching Tolerances 1.12.1.6 Moisture Control 1.12.1.7 Recorders 1.12.2 Concrete Mixers 1.12.2.1 Stationary, Central Plant, Mixers 1.12.2.2 Mixing Time and Uniformity 1.12.3 Transporting Equipment 1.12.4 Transfer and Spreading Equipment 1.12.5 Paver-Finisher 1.12.5.1 Paver-Finisher with Fixed Forms 1.12.5.2 Slipform Paver-Finisher 1.12.5.3 Longitudinal Mechanical Float 1.12.5.4 Nonrotating Pipe Float 1.12.5.5 Other Types of Finishing Equipment 1.12.6 Curing Equipment 1.12.7 Texturing Equipment 1.12.7.1 Fabric Drag 1.12.8 Sawing Equipment 1.12.9 Straightedge 1.12.10 Profilograph PART 2 PRODUCTS 2.1 CEMENTITIOUS MATERIALS 2.1.1 Portland Cement 2.1.2 Pozzolan (Fly Ash) 2.1.2.1 Fly Ash 2.2 AGGREGATES 2.2.1 Aggregate Sources 2.2.2 Coarse Aggregate 2.2.2.1 Material Composition 2.2.2.2 Quality 2.2.2.3 Particle Shape Characteristics 2.2.2.4 Size and Grading 2.2.2.5 Deleterious Materials - Airfield Pavements 2.2.2.6 Testing Sequence Deleterious Materials -- Airfields Only

2.2.2.7 Resistance to Freezing and Thawing

- 2.2.2.8 Resistance to Abrasion
- 2.2.3 Fine Aggregate
 - 2.2.3.1 Composition
 - 2.2.3.2 Particle Shape
 - 2.2.3.3 Grading
 - 2.2.3.4 Deleterious Material
- 2.2.3.5 Resistance to Freezing and Thawing
- 2.3 CHEMICAL ADMIXTURES
 - 2.3.1 Air-Entraining Admixtures
 - 2.3.2 Accelerator
 - 2.3.3 Retarder
 - 2.3.4 Water-Reducer
- 2.4 CURING MATERIALS
 - 2.4.1 Membrane Forming Curing Compound
 - 2.4.2 Burlap
- 2.5 WATER
- 2.6 JOINT MATERIALS
 - 2.6.1 Expansion Joint Material
 - 2.6.2 Slip Joint Material
- 2.7 REINFORCING
 - 2.7.1 Reinforcing Bars and Bar Mats
 - 2.7.2 Welded Wire Fabric
 - 2.7.3 Deformed Wire Fabric
- 2.8 DOWELS
 - 2.8.1 Dowels
 - 2.8.2 Tie Bars
- 2.9 EPOXY RESIN
- 2.10 SPECIFIED CONCRETE STRENGTH AND OTHER PROPERTIES
 - 2.10.1 Specified Flexural Strength
 - 2.10.2 Concrete Temperature
 - 2.10.3 Concrete Strength for Final Acceptance
- 2.11 MIXTURE PROPORTIONS BY CONTRACTOR
 - 2.11.1 Composition
 - 2.11.2 Concrete Proportioning Studies, Pavement Concrete
 - 2.11.2.1 Water-Cement Ratio
 - 2.11.2.2 Trial Mixture Studies
 - 2.11.2.3 Mixture Proportioning for 90-day Flexural Strength
 - 2.11.3 Contractor Quality Control for Average Flexural Strength
 - 2.11.3.1 Average CQC Flexural Strength Required for Mixtures

PART 3 EXECUTION

- 3.1 PREPARATION FOR PAVING
- 3.2 CONDITIONING OF UNDERLYING MATERIAL
 - 3.2.1 General Procedures
 - 3.2.2 Traffic on Underlying Material
- 3.3 WEATHER LIMITATIONS
 - 3.3.1 Placement and Protection During Inclement Weather
 - 3.3.2 Paving in Hot Weather
 - 3.3.3 Prevention of Plastic Shrinkage Cracking
 - 3.3.4 Paving in Cold Weather
- 3.4 CONCRETE PRODUCTION
 - 3.4.1 Batching and Mixing Concrete
 - 3.4.2 Transporting and Transfer Spreading Operations
- 3.5 PAVING
 - 3.5.1 General Requirements
 - 3.5.2 Consolidation

- 3.5.3 Operation
- 3.5.4 Required Results
- 3.5.5 Fixed Form Paving
 - 3.5.5.1 Forms for Fixed-Form Paving
 - 3.5.5.2 Form Removal
- 3.5.6 Slipform Paving
 - 3.5.6.1 General
 - 3.5.6.2 Guideline for Slipform Paving
 - 3.5.6.3 Laser Controls
- 3.5.7 Placing Reinforcing Steel
- 3.5.8 Placing Dowels and Tie Bars
 - 3.5.8.1 Contraction Joints
 - 3.5.8.2 Construction Joints-Fixed Form Paving
 - 3.5.8.3 Dowels Installed in Hardened Concrete
 - 3.5.8.4 Expansion Joints
- 3.6 FINISHING
 - 3.6.1 Longitudinal Floating
 - 3.6.2 Other Types of Finishing Equipment
 - 3.6.3 Machine Finishing With Fixed Forms
 - 3.6.4 Machine Finishing With Slipform Pavers
 - 3.6.5 Surface Correction and Testing
 - 3.6.6 Hand Finishing
 - 3.6.6.1 Equipment
 - Finishing and Floating 3.6.6.2
 - 3.6.7 Texturing
 - 3.6.7.1 Fabric Drag Surface Finish
 - 3.6.8 Edging
 - 3.6.9 Outlets in Pavement
- 3.7 CURING
 - 3.7.1 Protection of Concrete 3.7.2 Membrane Curing
- 3.8 JOINTS
 - 3.8.1 General Requirements for Joints
 - 3.8.2 Longitudinal Construction Joints
 - 3.8.3 Transverse Construction Joints
 - 3.8.4 Expansion Joints
 - 3.8.5 Slip Joints
 - 3.8.6 Contraction Joints
 - 3.8.6.1 Sawed Joints
 - 3.8.7 Thickened Edge Joints
 - 3.8.8 Sealing Joints
- 3.9 REPAIR, REMOVAL, REPLACEMENT OF SLABS
 - 3.9.1 General Criteria
 - 3.9.2 Slabs with Cracks Thru Interior Areas
 - 3.9.2.1 Cracks That Do Not Extend Full Depth of Slab
 - 3.9.2.2 Cracks That Extend Full Depth of Slab
 - 3.9.3 Cracks close to and Parallel to Transverse Joints
 - 3.9.3.1 Full Depth Cracks Present, Original Joint Not Opened
 - 3.9.3.2 Full Depth Cracks, Original Joint Also Cracked
 - 3.9.4 Removal and Replacement of Full Slabs
 - Removal and Replacement of Partial Slabs 3.9.5
 - 3.9.6 Repairing Spalls Along Joints
- 3.10 EXISTING CONCRETE PAVEMENT REMOVAL AND REPAIR
 - 3.10.1 Removal of Existing Pavement Slab
 - 3.10.2 Edge Repair
 - 3.10.2.1 Spall Repair
 - 3.10.2.2 Underbreak Repair

- 3.10.2.3 Underlying Material
- 3.11 PAVEMENT PROTECTION
- 3.12 TESTING AND INSPECTION FOR CONTRACTOR QUALITY CONTROL
 - 3.12.1 Testing and Inspection by Contractor
 - 3.12.2 Testing and Inspection Requirements
 - 3.12.2.1 Fine Aggregate
 - 3.12.2.2 Coarse Aggregate

 - 3.12.2.3 Quality of Aggregates
 3.12.2.4 Scales, Batching and Recording
 3.12.2.5 Batch-Plant Control

 - 3.12.2.6 Concrete Mixture
 - 3.12.2.7 Concrete Strength Testing for CQC
 - 3.12.2.8 Inspection Before Placing
 - 3.12.2.9 Paving
 - 3.12.2.10 Vibrators

 - 3.12.2.11 Curing Inspection 3.12.2.12 Cold-Weather Protection
 - 3.12.2.13 Mixer Uniformity
 - 3.12.2.14 Reports
- -- End of Section Table of Contents --

SECTION 02753

CONCRETE PAVEMENT FOR AIRFIELDS AND OTHER HEAVY-DUTY PAVEMENTS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

ACI INTERNATIONAL (ACI)

ACI 211.1	(1991) Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete
ACI 214.3R	(1988; R 1997) Simplified Version of the Recommended Practice for Evaluation of Strength Test Results of Concrete
ACI 305R	(1999) Hot Weather Concreting

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

AASHTO M 182 (1991; R 1996) Burlap Cloth Made from Jute or Kenaf

ASTM INTERNATIONAL (ASTM)

ASTM A 184/A 184M	(2001) Fabricated Deformed Steel Bar Mats for Concrete Reinforcement
ASTM A 185	(2001) Steel Welded Wire Reinforcement, Plain, for Concrete
ASTM A 497	(2001) Steel Welded Wire Reinforcement, Deformed, for Concrete
ASTM A 615/A 615M	(2001b) Deformed and Plain Billet-Steel Bars for Concrete Reinforcement
ASTM C 1064/C 1064M	(1999) Temperature of Freshly Mixed Portland Cement Concrete
ASTM C 1077	(1998) Laboratories Testing Concrete and Concrete Aggregates for Use in Construction and Criteria for Laboratory Evaluation
ASTM C 117	(1995) Materials Finer Than 75 micrometer (No. 200) Sieve in Mineral Aggregates by Washing
ASTM C 123	(1998) Lightweight Particles in Aggregate

ASTM C 1260	(1994) Potential Alkali Reactivity of Aggregates (Mortar-Bar Method)
ASTM C 131	(2001) Resistance to Degradation of Small- Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine
ASTM C 136	(2001) Sieve Analysis of Fine and Coarse Aggregates
ASTM C 142	(1978; R 1997) Clay Lumps and Friable Particles in Aggregates
ASTM C 143/C 143M	(2000) Slump of Hydraulic Cement Concrete
ASTM C 150	(2002) Portland Cement
ASTM C 171	(1997a) Sheet Materials for Curing Concrete
ASTM C 172	(1999) Sampling Freshly Mixed Concrete
ASTM C 174/C 174M	(1997) Measuring Thickness of Concrete Elements Using Drilled Concrete Cores
ASTM C 192/C 192M	(2000) Making and Curing Concrete Test Specimens in the Laboratory
ASTM C 231	(1997el) Air Content of Freshly Mixed Concrete by the Pressure Method
ASTM C 260	(2001) Air-Entraining Admixtures for Concrete
ASTM C 295	(2001) Petrographic Examination of Aggregates for Concrete
ASTM C 31/C 31M	(2000e1) Making and Curing Concrete Test Specimens in the Field
ASTM C 33	(2001a) Concrete Aggregates
ASTM C 39/C 39M	(2001) Compressive Strength of Cylindrical Concrete Specimens
ASTM C 470/C 470M	(1998) Molds for Forming Concrete Test Cylinders Vertically
ASTM C 494/C 494M	(1999ael) Chemical Admixtures for Concrete
ASTM C 618	(2001) Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete
ASTM C 78	(1994) Flexural Strength of Concrete (Using Simple Beam With Third-Point Loading)

ASTM C 881	(1999) Epoxy-Resin-Base Bonding Systems for Concrete		
ASTM C 94/C 94M	(2000e2) Ready-Mixed Concrete		
ASTM D 1752	(1984; R 1996el) Preformed Sponge Rubber and Cork Expansion Joint Fillers for Concrete Paving and Structural Construction		
ASTM D 3665	(1999) Random Sampling of Construction Materials		
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST)			
NIST HB 44	(1997) NIST Handbook 44: Specifications, Tolerances, and other Technical Requirements for Weighing and Measuring Devices		
NATIONAL READY-MIXED CONCRETE ASSOCIATION (NRMCA)			
NRMCA CPMB 100	(1996) Concrete Plant Standards		
STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION (CDT)			
CDT Test 526	(2002) Operation of California Profilograph and Evaluation of Profiles		
U.S. ARMY CORPS OF ENGINEERS (USACE)			
COE CRD-C 100	(1975) Method of Sampling Concrete Aggregate and Aggregate Sources, and Selection of Material for Testing		
COE CRD-C 104	(1980) Method of Calculation of the Fineness Modulus of Aggregate		
COE CRD-C 114	(1997) Test Method for Soundness of Aggregates by Freezing and Thawing of Concrete Specimens		
COE CRD-C 119	(1991) Standard Test Method for Flat or Elongated Particles in Coarse Aggregate		
COE CRD-C 130	(1989) Scratch Hardness of Coarse Aggregate Particles		
COE CRD-C 143	(1962) Specifications for Meters for Automatic Indication of Moisture in Fine Aggregate		
COE CRD-C 300	(1990) Specifications for Membrane-Forming Compounds for Curing Concrete		
COE CRD-C 400	(1963) Requirements for Water for Use in Mixing or Curing Concrete		

COE CRD-C 521 (1981) Standard Test Method for Frequency and

Amplitude of Vibrators for Concrete

COE CRD-C 55 (1992) Test Method for Within-Batch

Uniformity of Freshly Mixed Concrete

U.S. DEPARTMENT OF DEFENSE (DOD)

MIL-DTL-24441/20 (Rev. A) Paint, Epoxy-Polyamide, Green

Primer, Formula 150, Type III

1.2 SYSTEM DESCRIPTION

This section is intended to stand alone for construction of concrete (rigid) pavement. However, where the construction covered herein interfaces with other sections, the construction at each interface shall conform to the requirements of both this section and the other section, including tolerances for both.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:

SD-03 Product Data

Equipment; G, RE

- a. Details and data on the batching and mixing plant prior to plant assembly including manufacturer's literature showing that the equipment meets all requirements specified herein.
- b. A description of the equipment proposed for transporting concrete mixture from the central mixing plant to the paving equipment at least 30 days prior to start of paving unless otherwise specified.
- c. At the time the materials are furnished for the mixture proportioning study, a description of the equipment proposed for the placing of the concrete mixture, method of control, and manufacturer's literature on the paver and finisher, together with the manufacturer's written instructions on adjustments and operating procedures necessary to assure a tight, smooth surface on the concrete pavement, free of tears and other surface imperfections, including excessive paste on the surface. The literature shall show that the equipment meets all details of these specifications.

Proposed Techniques; G, RE

a. A description of the placing and protection methods proposed prior to construction of the test section, if concrete is to be placed in or exposed to hot or cold weather conditions.

- b. A detailed plan of the proposed paving pattern showing all planned construction joints. No deviation from the jointing pattern shown on the drawings shall be made without written approval of the New York District Geotechnical Branch.
 - c. Data on the curing media and methods to be used.

Samples for Mixture Proportioning Studies; G, ED

The results of the Contractor's mixture proportioning studies along with a statement giving the maximum nominal coarse aggregate size and the proportions of all ingredients that will be used in the manufacture of concrete at least 14 days prior to commencing concrete placing operations. Aggregate quantities shall be based on the mass in a saturated surface dry condition. The statement shall be accompanied by test results from an independent commercial testing laboratory, inspected by the Government, and approved in writing, showing that mixture proportioning studies have been made with materials proposed for the project and that the proportions selected will produce concrete of the qualities indicated. No substitutions shall be made in the materials used in the mixture proportions without additional tests to show that the quality of the concrete is satisfactory.

Delivery, Storage, and Handling of Materials; G, ED

Copies of waybills or delivery tickets for cementitious material during the progress of the work. Before the final payment is allowed, waybills and certified delivery tickets shall be furnished for all cementitious material used in the construction.

SD-06 Test Reports

Sampling and Testing; G, ED

Certified copies of laboratory test reports, including all test data, for cement, pozzolan, aggregate, admixtures, epoxy, and curing compound proposed for use on this project. These tests shall be made by an approved commercial laboratory or by a laboratory maintained by the manufacturers of the materials. No material shall be used until notice of acceptance has been given. Materials may be subjected to check testing by the Government from samples obtained at the manufacturer, at transfer points, or at the project site.

1.4 MEASUREMENT AND PAYMENT

1.4.1 Measurements

1.4.1.1 Concrete

The quantity of concrete to be paid for will be the volume of concrete in cubic meters placed in the completed and accepted pavement. Concrete will be measured in place in the completed and accepted pavement only within the neat line dimensions shown in the plan and cross section. No deductions will be made for rounded or beveled edges or the space occupied by pavement reinforcement, dowel bars, or electrical conduits, nor for any void, or

other structure extending into or through the pavement slab, measuring 0.1 cubic meter or less in volume. No other allowance for concrete will be made unless placed in specified locations in accordance with written instructions previously issued by the Contracting Officer.

1.4.1.2 Mixture Proportions By Contractor

The Contractor shall be responsible for the mixture proportions of cementitious materials and chemical admixtures; no separate measurement or payment will be made for any cementitious material, including pozzolan, or for any chemical admixture.

1.4.1.3 Steel Reinforcement

The quantity of fabricated barmats or welded steel wire fabric and tie bars used in the work will not be measured for payment but will be considered as a subsidiary obligation of the Contractor, covered under the price per cubic meter for concrete.

1.4.1.4 Dowels and Epoxy Materials

The quantity of dowels and epoxy materials used in the work will not be measured for payment but will be considered as a subsidiary obligation of the Contractor, covered under the price per cubic meter for concrete.

1.4.1.5 Joint Materials

The quantity of expansion joint filler and slip joint filler will not be measured for payment but will be considered as a subsidiary obligation of the Contractor, covered under the price per cubic meter for concrete. Joint sealing materials are covered in Section 02760 FIELD MOLDED SEALANTS FOR SEALING JOINTS IN RIGID PAVEMENTS or Section 02762 COMPRESSION JOINT SEALS FOR CONCRETE PAVEMENTS.

1.4.2 Payments

1.4.2.1 Concrete

The quantity of concrete will be paid for and included in the lump sum contract price. If less than 100 percent payment is due based on the pay factors stipulated in paragraph ACCEPTABILITY OF WORK AND PAYMENT ADJUSTMENTS, a unit price per cubic meter of \$75.95 per cubic meter shall be used for purposes of calculating payment reduction, as identified in the Bid Schedule, shall be used for purposes of calculating payment reduction.

1.5 ACCEPTABILITY OF WORK AND PAYMENT ADJUSTMENTS

Concrete samples shall be taken by the Contractor in the field to determine the slump, air content, and strength of the concrete. Test beams and test cylinders shall be made for determining conformance with the strength requirements of these specifications. Any pavement not meeting the requirement for 'specified strength' shall be removed and replaced at no additional cost to the Government. The air content shall be determined in accordance with ASTM C 231. Slump tests shall be made in accordance with ASTM C 143/C 143M. Test beams and cylinders shall be molded and cured in accordance with ASTM C 31/C 31M and as specified below. Steel molds shall be used for molding the beams specimens. Molds for cylinder test specimens

shall conform to ASTM C 470/C 470M. The Contractor shall furnish all materials, labor, and facilities required for molding, curing, testing, and protecting test specimens at the site and in the laboratory. Laboratory curing facilities for test specimens shall include furnishing and operating water tanks equipped with temperature-control devices that will automatically maintain the temperature of the water at 23 plus or minus 2 degrees C as required in ASTM C 31/C 31M. The Contractor shall furnish and maintain at the site boxes or other facilities suitable for storing the specimens while in the mold at a temperature range from 16 to 27 degrees C and in an environment preventing moisture loss from specimens as required by ASTM 31/C 31M. Tests of the fresh concrete and of the hardened concrete specimens shall be made by and at the expense of the Contractor.

1.5.1 Pavement Lots

Appropriate adjustment in payment for individual lots of concrete pavement will be made in accordance with the following paragraphs. No such adjustment in payment will be made for any material other than concrete. A lot will be that quantity of construction that will be evaluated for compliance with specification requirements. A lot will be equal to 750 cubic meters. In order to evaluate thickness, each lot will be divided into four equal sublots. Grade and surface smoothness (and condition) determinations will be made on the lot as a whole. However, any pavement not meeting the required 'specified strength' shall be removed and replaced at no additional cost to the Government. Strength will be evaluated, but will not be considered for payment adjustment. Edge slump requirements will be applied to each individual slab into which the primary paving lanes are divided by transverse joints, and will not be considered for payment adjustment. Samples for determining aggregate grading for fine aggregate and each size of coarse aggregate shall be taken as the aggregate bins discharge into the weigh hoppers. Results of tests on aggregates shall be used to control aggregate production and concreting operations, as specified in paragraph TESTING AND INSPECTION FOR CONTRACTOR QUALITY CONTROL, but will not be used for payment adjustment. Samples for determining air content and slump and for fabricating strength specimens shall be taken in accordance with ASTM C 172 during or immediately following delivery of the concrete at the paving site and deposition of the concrete immediately in front of the paver or transfer spreader. Results of strength tests shall be used to control concreting operations, but will not be used for payment adjustment. Cores for thickness determination shall be drilled and evaluated as specified. Location of all samples shall be as directed and will be deliberately selected on a truly random basis, not haphazard, using commonly recognized methods of assuring randomness, employing randomizing tables or computer programs, in accordance with ASTM D 3665.

1.5.2 Acceptance of Lots

When a lot of material fails to meet the specification requirements, that lot will be accepted at a reduced price or shall be removed and replaced. The lowest computed percent payment determined for any pavement characteristic (i.e., thickness, grade, and surface smoothness) discussed below shall be the actual percent payment for that lot. The actual percent payment will be applied to the bid price and the quantity of concrete placed in the lot to determine actual payment.

1.5.3 Evaluation

The Contractor shall provide facilities for and, where directed, personnel to assist in obtaining samples for any Government quality assurance testing, all at no additional cost to the Government. Such testing will in no way relieve the Contractor of any specified testing responsibilities. The Contractor shall provide all sampling and testing required for acceptance and payment adjustment at its expense. Such sampling and testing shall be performed by a commercial testing laboratory inspected by the Government and approved in writing. The laboratory performing the tests shall be on-site and shall conform with ASTM C 1077. The individuals who sample and test concrete or the constituents of concrete as required in this specification shall be certified as American Concrete Institute (ACI) Concrete Field Testing Technicians, Grade I, or shall have otherwise demonstrated to the satisfaction of the Contracting Officer other training providing knowledge and ability equivalent to the ACI minimum requirements for certification. The individuals who perform the inspection of concrete shall be certified as ACI Concrete Construction Inspector, Level II, or have otherwise demonstrated to the satisfaction of the Contracting Officer other training providing knowledge and ability equivalent to the ACI minimum requirements for certification. The Government will inspect the laboratory, equipment, and test procedures prior to start of concreting operations and at least once per year thereafter for conformance with ASTM C 1077.

1.5.4 Additional Sampling and Testing

The Contracting Officer reserves the right to direct additional samples and tests for any area which appears to deviate from the specification requirements. Testing in these areas will be in addition to the sublot or lot testing, and the requirements for these areas will be the same as those for a sublot or lot, but shall be at no additional cost to the Government.

1.5.5 Air Content Tests

Air content of the concrete shall be controlled as specified in paragraph TESTING AND INSPECTION FOR CONTRACTOR QUALITY CONTROL and will not be considered for payment adjustment.

1.5.6 Slump Tests

Slump of the concrete shall be controlled as specified in paragraph TESTING AND INSPECTION FOR CONTRACTOR QUALITY CONTROL and will not be considered for payment adjustment.

1.5.7 Surface Smoothness

The Contractor shall use both of the following methods to test and evaluate surface smoothness of the pavement. All testing shall be performed in the presence of the Contracting Officer's Representative. Detailed notes shall be kept of the results of the testing and a copy furnished to the Government immediately after each day's testing. The profilograph method shall be used for all longitudinal testing, except where the runs would be less than 60 m in length and at the ends where the straightedge shall be used. Where drawings show required deviations from a plane surface (crowns, drainage inlets, etc.), the surface shall be finished to meet the approval of the Contracting Officer.

1.5.7.1 Smoothness Requirements

a. Straightedge Testing: The finished surfaces of the pavements shall have no abrupt change of 3 mm or more, and all pavements shall be within the limits specified in Table 1 when checked with an approved 3.66 m straightedge.

TABLE 1
STRAIGHTEDGE SURFACE SMOOTHNESS--PAVEMENTS

Pavement Category	Direction of Testing	Limits mm
Runways and Taxiways	Longitudinal	3
	Transverse	6

b. Profilograph Testing: The finished surfaces of the pavements shall have no abrupt change of 3 mm or more, and all pavement shall have a Profile Index not greater than specified in Table 2 when tested with an approved California-type profilograph. If the extent of the pavement in either direction is less than 60 m, that direction shall be tested by the straightedge method and shall meet requirements specified for such.

TABLE 2
PROFILOGRAPH SURFACE SMOOTHNESS--PAVEMENTS

Pavement Category	Direction of Testing	Maximum Specified Profile Index mm per km
Runways	Longitudinal Transverse	110 Use straightedge
Taxiways	Longitudinal Transverse	140 (Use Straightedge)

1.5.7.2 Testing Method

After the concrete has hardened sufficiently to permit walking thereon, but not later than 36 hours after placement, the surface of the pavement in each entire lot shall be tested by the Contractor in such a manner as to reveal all surface irregularities exceeding the tolerances specified above. However, transverse profilograph testing of multiple paving lanes shall be performed at the timing directed. Separate testing of individual sublots is not required. If any pavement areas are ground, these areas shall be retested immediately after grinding. The entire area of the pavement shall be tested in both a longitudinal and a transverse direction on parallel lines. The transverse lines shall be 4.5 m or less apart, as directed. The longitudinal lines shall be at the centerline of each paving lane shown on the drawings, regardless of whether the Contractor is allowed to pave two lanes at a time, and at the 1/8th point in from each side of the lane. Other areas having obvious deviations shall also be tested. Longitudinal testing lines shall be continuous across all joints. Transverse testing lines for pilot lanes shall be carried to construction joint lines and for fill-in lanes shall be carried 600 mm across construction joints, and the readings in this area applied to the fill-in lane. Straightedge testing of

the longitudinal edges of slipformed pilot lanes shall also be performed before paving fill-in lanes as specified in paragraph EDGE SLUMP AND JOINT FACE DEFORMATION.

- a. Straightedge Testing: The straightedge shall be held in contact with the surface and moved ahead one-half the length of the straightedge for each successive measurement. The amount of surface irregularity shall be determined by placing the freestanding (unleveled) straightedge on the pavement surface and allowing it to rest upon the two highest spots covered by its length and measuring the maximum gap between the straightedge and the pavement surface, in the area between these two high points.
- b. Profilograph Testing: Profilograph testing shall be performed using approved equipment and procedures described in CDT Test 526. The equipment shall utilize electronic recording and automatic computerized reduction of data to indicate "must-grind" bumps and the Profile Index for the pavement. The "blanking band" shall be 5 mm wide and the "bump template" shall span 25 mm with an offset of 10 mm. The profilograph shall be operated by an approved, factory-trained operator on the alignments specified above. A copy of the reduced tapes shall be furnished the Government at the end of each day's testing.

1.5.7.3 Payment Adjustment for Smoothness

- a. Straightedge Testing: Location and deviation from straightedge for all measurements shall be recorded. When between 5.0 and 10.0 percent and less than 15.0 percent of all measurements made within a lot exceed the tolerance specified in paragraph "Smoothness Requirements" above, after any reduction of high spots or removal and replacement, the computed percent payment based on surface smoothness will be 95 percent. When more than 10.0 percent and less than 15.0 percent of all measurements exceed the tolerance, the computed percent payment will be 90 percent. When between 15.0 and 20.0 percent of all measurements exceed the tolerance, the computed percent payment will be 75 percent. When 20.0 percent or more of the measurements exceed the tolerance, the lot shall be removed and replaced at no additional cost to the Government. Regardless of the above, any small individual area 33 square meters or less with surface deviation which exceeds the tolerance given above by more than 50 percent shall be corrected by grinding to meet the specification requirements above or shall be removed and replaced at no additional cost to the Government.
- b. Profilograph Testing: Location and data from all profilograph measurements shall be recorded. When the Profile Index of a lot exceeds the tolerance specified in paragraph "Smoothness Requirements" above by 16 mm per km but less than 32 mm per km, after any reduction of high spots or removal and replacement, the computed percent payment based on surface smoothness will be 95 percent. When the Profile Index exceeds the tolerance by 32 mm per km but less than 47 mm per km, the computed percent payment will be 90 percent. When the Profile Index exceeds the tolerance by 47 mm per km but less than 63 mm per km, the computed percent payment will be 75 percent. When the Profile Index exceeds the tolerance by 63 mm per km or more, the lot shall be removed and replaced at no additional cost to the Government. Regardless of the above, any small individual area with surface deviation which exceeds the tolerance given above by more than 79 mm per km or more,

shall be corrected by grinding to meet the specification requirements above or shall be removed and replaced at no additional cost to the Government.

c. Bumps ("Must Grind" Areas): Any bumps ("must grind" areas) shown on the profilograph trace which exceed 10 mm in height shall be reduced by grinding in accordance with subparagraph "Areas Defective In Plan Grade Or Smoothness" until they do not exceed 7.5 mm when retested. The determination will be made using a template with a scaled length corresponding to 7.62 m and a scaled height corresponding to 10 mm. Such grinding shall be tapered in all directions to provide smooth transitions to areas not requiring grinding. Areas of textured pavement shall be retextured in accordance with the subparagraph listed above. At the Contractor's option, pavement areas including ground areas may be rechecked with the profilograph in order to record a lower Profile Index.

1.5.8 Edge Slump and Joint Face Deformation

The following requirements on testing and evaluation of edge slump and joint face deformation apply only to pavements 250 mm or more in thickness. Use of slip-form paving equipment and procedures that fail to consistently provide edges within the specified tolerances on edge slump and joint face deformation shall be discontinued and the pavements shall be constructed by means of standard paving procedures using fixed forms. Slabs having more than the allowable edge slump shall be removed and replaced as specified in paragraph EXCESSIVE EDGE SLUMP before the adjacent lane is placed. Edge slump and joint face deformation will not be applied to payment adjustment.

1.5.8.1 Edge Slump

When slip-form paving is used, not more than 15.0 percent of the total free edge of any slab of the pavement, as originally constructed, shall have an edge slump exceeding 6 mm, and no slab shall have an edge slump exceeding 9 mm as determined in accordance with the measurements as specified in paragraph DETERMINATION OF EDGE SLUMP. (The total free edge of the pavement will be considered to be the cumulative total linear measurement of pavement edge originally constructed as non-adjacent to any existing pavement; i.e., 30 m of pilot lane, a paving lane originally constructed as a separate lane, will have 60 m of free edge; 30 m of fill-in lane will have no free edge, etc.,). The area affected by the downward movement of the concrete along the pavement edge shall not exceed 450 mm back from the edge.

1.5.8.2 Joint Face Deformation

In addition to the edge slump limits specified above, the vertical joint face shall have a surface within the maximum limits shown below:

Offset from Straightedge Applied Longitudinally To Pavement Surface 25 mm Back From Joint Line		Offset from Straightedge Applied Longitudinally To Vertical Face	Offset From Straightedge Applied Top to Bottom Against the Joint Face	Abrupt Offset in Any Direction	Offset of Joint Face From True Vertical
Airfield Pavement	3 mm	6 mm	9 mm	3 mm	8 mm per 100 mm
All other	6 mm	All other ite	ems same as airfi	ield pavemen	t.

1.5.8.3 Determination of Edge Slump

Pavement

Immediately after the concrete has hardened sufficiently to permit walking thereon, the pavement surface shall be tested by the Contractor in the presence of a representative of the Contracting Officer. Testing shall be performed with a straightedge to reveal irregularities exceeding the edge slump tolerance specified above. The edge slump shall be determined at each free edge of each slipformed paving lane constructed. The straightedge shall be placed transverse to the direction of paving and the end of the straightedge located at the edge of the paving lane. Measurements shall be made at 1.5 to 4.5 m spacings, as directed, commencing at the header where paving was started. Initially measurements shall be made at 1.5 m intervals in each lane. When no deficiencies are present, the Contracting Officer may approve an increase in the interval. When any deficiencies exist, the interval will be returned to 1.5 m. In no case shall the interval exceed 4.5 m. In addition to the transverse edge slump determination above, the Contractor, at the same time, shall check the longitudinal surface smoothness of the joint on a continuous line 25 mm back from the joint line using the straightedge advanced one-half its length for each reading. Other tests of the exposed joint face shall be made as directed to ensure that a uniform, true vertical joint face is attained. These tests shall include longitudinal straightedge testing of the vertical face and vertical testing of the face for both smoothness and angle. The measurements shall be made by the Contractor, shall be properly referenced in accordance with paving lane identification and stationing, and a report given to the Contracting Officer within 24 hours after measurement is made. The report shall also identify areas requiring replacement in accordance with paragraph EXCESSIVE EDGE SLUMP as well as the cumulative percentage of total free edge of pavement constructed to date which has an edge slump exceeding 6 mm.

1.5.8.4 Excessive Edge Slump

When edge slump exceeding the limits specified above is encountered on either side of the paving lane, additional straightedge measurements shall be made, if required, to define the linear limits of the excessive slump. The concrete for the entire width of the paving lane within these limits of excessive edge slump or joint deformation shall be removed and replaced in

conformance with paragraph REPAIR, REMOVAL, REPLACEMENT OR SLABS. Partial slabs removed and replaced shall extend across the full width of the pavement lane, parallel to the transverse joints, and both the section of the slab removed and the section remaining in place shall have a minimum length of 3 m to the nearest scheduled transverse joint. If less than 3 m remains, the entire slab shall be removed and replaced. Adding concrete or paste to the edge or otherwise manipulating the plastic concrete after the sliding form has passed, or patching the hardened concrete, shall not be used as a method for correcting excessive edge slump.

1.5.9 Plan Grade

1.5.9.1 Plan Grade Tolerances

The finished surfaces of pavements shall conform, within the tolerances shown below, to the lines, grades, and cross sections shown. The finished surfaces of airfield runway, taxiway, and apron pavements shall vary not more than 12 mm above or below the plan grade line or elevation indicated. The surfaces of other pavements shall vary not more than 18 mm. Plan grade shall be checked on the lot as a whole and when more than 5.0 and less than 10.0 percent of all measurements made within a lot are outside the specified tolerance, the computed percent payment for that lot will be 95 percent. When more than 10.0 percent are outside the specified tolerances, the computed percent payment for the lot will be 75 percent. However, in any areas where the deviation from grade exceeds the specified tolerances by 50 percent or more, the deficient area shall be removed and replaced at no additional cost to the Government. However, the above deviations from the approved grade line and elevation will not be permitted in areas where closer conformance with the planned grade and elevation is required for the proper functioning of appurtenant structures. The finished surfaces of new abutting pavements shall coincide at their juncture.

1.5.9.2 Grade Conformance Tests

Each pavement category shall be checked by the Contractor for conformance with plan grade requirements. For the purpose of making grade conformance tests, the pavements will be subdivided into the same lots used for all other payment adjustment items. Within 5 days after paving of each lot, the finished surface of the pavement area in each lot shall be tested by the Contractor, in the presence of a representative of the Contracting Officer, by running lines of levels at intervals corresponding with every longitudinal and transverse joint to determine the elevation at each joint intersection. The results of this survey shall be recorded and a copy given to the Government at the completion of the survey of each lot.

1.5.10 Flexural Strength

Each lot of pavement will be evaluated for acceptance in accordance with the following procedures. The Contractor shall be responsible for all testing required herein. Testing shall be performed by an approved commercial laboratory. Results of strength tests will not be used for payment adjustment.

1.5.10.1 Sampling and Testing

One composite sample of concrete from each sublot shall be obtained in accordance with ASTM C 172 from one batch or truckload. Test cylinders, 152

x 305 mm shall be fabricated and cured in accordance with ASTM C 31/C 31M; and tested in accordance with ASTM C 39/C 39M. Two test cylinders per sublot (8 per lot) shall be fabricated and cured for compressive strength, and all 8 cylinders shall be tested at 14-day age for acceptance. At the same time 2 additional test cylinders per sublot to be used for CQC tests shall be fabricated and cured; and tested as specified in paragraph TESTING AND INSPECTION FOR CONTRACTOR QUALITY CONTROL. Two beams for flexural strength shall be fabricated and cured in accordance with ASTM C 31/C 31M and tested in accordance with ASTM C 78 for every 2000 cubic meters of concrete. These shall be tested at the ages directed.

1.5.10.2 Computations

The following computations shall be performed:

- a. Average the eight 14-day compressive strength tests for the lot and also compute the standard deviation(s) for the eight tests.
- b. Convert the 14-day average compressive strength for the lot to equivalent 90-day average flexural strength for the lot, using the Correlation Ratio determined during mixture design studies.
- c. Report results of strength tests to the Contracting Officer daily. These values will be used for acceptance, but will not be used for payment adjustment.

1.5.11 Thickness

Each lot of pavement will be evaluated for acceptance and payment adjustment in accordance with the following procedure. The Contractor shall be responsible for drilling the cores, measuring the cores in the presence of the Contracting Officer's representative, and for filling the core holes as directed.

1.5.11.1 Drilling, Measuring, and Computations

Two cores, between 75 and 150 mm in diameter, shall be drilled from the pavement, per sublot (8 per lot). The Contractor shall fill the core holes with concrete containing an expanding admixture, as directed. The cores shall be evaluated for thickness of the pavement in accordance with ASTM C 174/C 174M, except that pavements exceeding 250 mm shall be measured using calibrated calipers or micrometer. The pavement thickness from the 8 cores for the lot shall be averaged and the standard deviation for the 8 thickness measurements shall be computed.

1.5.11.2 Evaluation and Payment Adjustment for Thickness

Using the Average Thickness of the lot, the computed percent payment for thickness shall be determined by entering the following table:

Pavements	Over	200	mm	in	Thickness

Deficiency in Thickness Determined by Cores mm	Computed Percent Payment for Thickness
0 to 6	100
6.5 to 12.5	75
13 to 18.5	50
19 or greater	0

Where 0 percent payment is indicated, the entire lot shall be removed and replaced at no additional cost to the Government. Where either of the two cores from a sublot show a thickness deficiency of 19 mm or greater, two more cores shall be drilled in the sublot and the average thickness of the four cores computed. If this average shows a thickness deficiency of 19 mm or more the entire sublot shall be removed.

1.5.12 Partial Lots

When operational conditions cause a lot to be terminated before the specified four sublots have been completed, the following procedure shall be used to adjust the lot size and number of tests for the lot. Where three sublots have been completed, they shall constitute a lot and acceptance criteria adjusted accordingly. Where one or two sublots have been completed, they shall be incorporated into the next lot or the previous lot, as directed, and the total number of sublots shall be used and acceptance criteria adjusted accordingly.

1.5.13 Areas Defective in Plan Grade or Smoothness

In areas not meeting the specified limits for surface smoothness and plan grade, high areas shall be reduced to attain the required smoothness and grade, except as depth is limited below. High areas shall be reduced either by hand rubbing the freshly finished concrete with a silicon carbide brick and water when the concrete is less than 36 hours old or by grinding the hardened concrete with an approved surface grinding machine after the concrete is 14 days or more old. Rubbing with a silicon carbide brick and water shall be discontinued as soon as contact with the coarse aggregate is made, and all further necessary reduction shall be accomplished by grinding the hardened concrete with a surface-grinding machine after it is 14 days old. The area corrected by grinding the surface of the hardened concrete shall not exceed 5 percent of the area of any integral slab, and shall not exceed 1 percent of the total area of any sublot. The depth of grinding shall not exceed 6 mm. All pavement areas requiring plan grade or surface smoothness corrections in excess of the limits specified above, shall be removed and replaced in conformance with paragraph REPAIR, REMOVAL, REPLACEMENT OF SLABS. All areas in which rubbing or grinding has been performed will be subject to the thickness tolerances specified in paragraph Thickness. Any rubbing or grinding performed on individual slabs with excessive deficiencies shall be performed at the Contractor's own decision without entitlement to additional compensation if eventual removal of the slab is required.

1.6 ACCEPTABILITY OF WORK

The materials and the pavement itself will be accepted on the basis of tests made by the Government and by the Contractor's approved commercial laboratory or the supplier's approved laboratory, all as specified herein. The Government may, at its discretion, make check tests to validate the results of the Contractor's testing. If the results of the Government and Contractor tests vary by less than 2.0 percent, of the Government's test results, the results of the Contractor's tests will be used. If the results of the Government and Contractor tests vary by $2.0\ \mathrm{percent}$ or more, but less than 4.0 percent, the average of the two will be considered the value to be used. If these vary by 4.0 percent or more, each sampling and testing procedure shall be carefully evaluated and both the Government and the Contractor shall take another series of tests on duplicate samples of material. If these vary by 4.0 percent or more, the results of the tests made by the Government shall be used and the Government will continue check testing of this item on a continuous basis until the two sets of tests agree within less than 4.0 percent on a regular basis. Testing performed by the Government will in no way at any time relieve the Contractor from the specified testing requirements.

1.7 PRECONSTRUCTION TESTING OF MATERIALS

The Contractor shall not be entitled to any additional payment or extension of time because of delays caused by sampling and testing additional sources, or samples, necessitated by failure of any samples.

1.7.1 Aggregates

Aggregates shall be sampled by the Contractor in the presence of a Government representative. Samples shall be obtained in accordance with COE CRD-C 100 and of the size indicated therein, or larger if specified in paragraph Testing Sequence Deleterious Materials and shall be representative of the materials to be used for the project. Testing of samples shall be the responsibility of the Contractor and shall be performed by a commercial laboratory approved by the Contracting Officer. Testing shall be performed and results shall be submitted as specified in paragraph QUALITY OF AGGREGATES. No material shall be used or brought on to the Project site until, in the opinion of the Contracting Officer, the test results show that it meets all requirements of these specifications.

1.7.2 Chemical Admixtures

The Contractor shall provide satisfactory facilities for ready procurement of adequate test samples. All sampling and testing of an admixture will be by and at the expense of the Government. Tests will be conducted with materials proposed for the project. An air-entraining admixture that has been in storage at the project site for longer than 6 months or that has been subjected to freezing will be retested at the expense of the Contractor when considered appropriate and shall be rejected if test results are not satisfactory.

1.7.3 Curing Compound

The Contractor shall provide satisfactory facilities for ready procurement of adequate test samples. The sampling and testing will be by and at the expense of the Contractor.

1.7.4 Epoxy-Resin Material

At least 30 days before the material is used, the Contractor shall submit certified copies of test results showing that the specific lots or batches from which the material will be furnished to this project have been tested by the manufacturer and that the material conforms to the requirements of these specifications. When epoxy resin arrives at the job site, the Contractor shall assist the Government to sample the material. The Government will test the sample or will retain it in storage for possible future testing, as considered appropriate.

1.7.5 Cements and Pozzolans

Preconstruction sampling and testing of cement and pozzolan shall conform to the requirements specified for sampling and testing during construction except that test results showing that each material meets specification requirements shall be available at least 30 days before start of paving operations.

1.8 TESTING BY CONTRACTOR DURING CONSTRUCTION

1.8.1 Contractor's Testing Requirements

During construction, the Contractor shall be responsible for sampling and testing aggregates, cementitious materials (cement and pozzolan), and concrete to determine compliance with the specifications. All sampling and testing shall be performed by an approved commercial laboratory, or for cementitious materials, the manufacturer's laboratory. Samples of aggregate shall be obtained as the bins discharge into the weigh hopper. Samples of concrete shall be obtained at the point of delivery to the paver. The Government will sample and test concrete and ingredient materials as considered appropriate. The Contractor shall provide facilities and labor as may be necessary for procurement of representative test samples. Testing by the Government will in no way relieve the Contractor of the specified testing requirements.

1.8.2 Cementitious Materials

Cement and pozzolan will be accepted on the basis of manufacturer's certification of compliance, accompanied by mill test reports showing that the material in each shipment meets the requirements of the specification under which it is furnished. No cementitious material shall be used until notice of acceptance has been given by the Contracting Officer. Cementitious material may be subjected to check testing by the Government from samples obtained at the mill, at transfer points, or at the project site

1.9 QUALIFICATIONS

All Contractor Quality Control personnel assigned to concrete construction shall be American Concrete Institute (ACI) Certified Workmen in one of the following grades (or shall have approved written evidence of having completed similar qualification programs):

Concrete Field Testing Technician, Grade I Concrete Laboratory Testing Technician, Grade I or II Concrete Construction Inspector, Level II

The foreman or lead journeyman of the finishing crew shall have similar qualification for ACI Concrete Flatwork Technician/Finisher, or equal. Written documentation shall be furnished for each workman in the above groups.

1.10 TEST SECTION

At least 10 days but not more than 60 days prior to construction of the concrete pavement, a test section shall be constructed as part of the production paving area at an outer edge of Taxiway J Station 1247+63.995 to Station 1248+90.495. If part of the production paving area, the test section will be allowed to remain in place, if meeting all specification requirements and will be paid for as part of the production pavement. There will be no separate payment for the test section or sections and the cost of the materials, and the construction will be considered a subsidiary cost of constructing the project. The Contractor shall notify the Contracting Officer at least 5 days in advance of the date of test section construction. The test section shall consist of one paving lane at least 126.5 m long x 11.5 m wide and shall be constructed to a thickness as shown on the drawings for Taxiway J. The lane width shall be the same as that required for use in the project. The test section shall contain at least one transverse construction joint. If keyed or doweled longitudinal construction joints are required in any of the production pavements, they shall be installed full length along one side of the test strip throughout the test section. If both keys and dowels are required, each shall be installed in half of the test section. Two separate days shall be used for construction of the test section. The Contractor shall use the test section to develop and demonstrate to the satisfaction of the Contracting Officer the proposed techniques of mixing, hauling, placing, consolidating, finishing, curing, start-up procedures, testing methods, plant operations, and the preparation of the construction joints. Variations in mixture proportions other than water shall be made if directed. The test section shall be placed as approved by the Contracting Officer. The Contractor shall vary the water content, as necessary, to arrive at the appropriate content. The mixing plant shall be operated and calibrated prior to start of placing the test section. The Contractor shall use the same equipment, materials, and construction techniques on the test section as will be used in all subsequent work. Base course preparation, concrete production, placing, consolidating, curing, construction of joints, and all testing shall be in accordance with applicable provisions of this specification. The Contractor shall construct the test section meeting all specification requirements and being acceptable to the Contracting Officer in all aspects, including surface texture. Failure to construct an acceptable test section will necessitate construction of additional test sections at no additional cost to the Government. Test sections allowed to be constructed as part of the production paving which do not meet specification requirements shall be removed at the Contractor's expense. If the Contractor proposes to use slipform paving and is unable to construct an acceptable test section, or if the slipform paving equipment and procedures are found to be unable to produce acceptable pavement at any time, the slipform paving equipment shall be removed from the job and the construction completed using stationary side forms and equipment compatible with them. The Contractor shall provide six cores at least 150 mm diameter by full depth cut from points selected in the test section by the Government, 5 days after completion of the test section. Production paving may be started immediately after the results of 7-day

Wheeler Sack Parallel Taxiway Fort Drum, New York

tests of the cores have been approved and after approval of the test section.

1.11 DELIVERY, STORAGE, AND HANDLING OF MATERIALS

1.11.1 Bulk Cementitious Materials

All cementitious material shall be furnished in bulk. The temperature of the cementitious material, as delivered to storage at the site, shall not exceed 65 degrees C.

1.11.1.1 Transportation

When bulk cementitious material is not unloaded from primary carriers directly into weather-tight hoppers at the batching plant, transportation from the railhead, mill, or intermediate storage to the batching plant shall be accomplished in adequately designed weather-tight trucks, conveyors, or other means that will protect the cementitious material from exposure to moisture.

1.11.1.2 Storage Requirements

Immediately upon receipt at the site of the work, cementitious materials shall be stored in a dry and properly ventilated structure. All storage facilities shall be subject to approval and shall allow easy access for inspection and identification. Sufficient cementitious materials shall be in storage to sustain continuous operation of the concrete mixing plant while the pavement is being placed. To prevent cement from becoming unduly aged after delivery, any cement that has been stored at the site for 60 days or more shall be used before using cement of lesser age.

1.11.1.3 Separation of Materials

Separate facilities shall be provided which will prevent any intermixing during unloading, transporting, storing, and handling of each type of cementitious material.

1.11.2 Aggregate Materials

Local quarries have the potential to produce the type of desired aggregate, although this does not preclude any other sources of crushed stone that meet the requirements of paragraph QUALITY OF AGGREGATES. All sources shall still meet the requirements of paragraph QUALITY OF AGGREGATES regardless of past testing.

1.11.2.1 Storage

Aggregate shall be stored in a manner that will avoid breakage, segregation, or contamination by foreign materials. Contractor shall use good housekeeping practices at quarry. Each size of aggregate from each source shall be stored separately in free-draining stockpiles. Aggregates shall only be brought on to Fort Drum AFTER meeting the requirements listed in the QUALITY OF AGGREGATES paragraph. Each 1000 or 3000 cubic meter stockpile shall be segregated and clearly identified as stated in paragraph QUALITY OF AGGREGATES. Stockpile shall not exceed 4.6 meters in height. Fine aggregate and the smallest size coarse aggregate shall remain in free-draining storage for at least 24 hours immediately prior to use. Sufficient aggregate shall

Wheeler Sack Parallel Taxiway Fort Drum, New York

be maintained at the site at all times to permit continuous uninterrupted operation of the mixing plant at the time concrete pavement is being placed.

1.11.2.2 Handling

Aggregate shall be handled avoiding segregation or degradation. Vehicles used for stockpiling or moving aggregate shall be kept clean of foreign materials. Tracked equipment shall not be allowed on coarse aggregate stockpiles. Stockpiles shall be built up and worked avoiding segregation in the piles and preventing different sizes of aggregate from being mixed during storage or batching. Aggregate shall not be stored directly on ground unless a sacrificial layer is left undisturbed and unused.

1.11.3 Other Materials

Reinforcing bars and accessories shall be stored above the ground on platforms, skids, or other supports. Other materials shall be stored avoiding contamination and deterioration. Chemical admixtures which have been in storage at the project site for longer than 6 months or which have been subjected to freezing shall not be used unless retested and proven to meet the specified requirements. The Contractor shall ensure that materials can be accurately identified after bundles or containers are opened.

1.12 EQUIPMENT

All plant, equipment, tools, and machines used in the work shall be maintained in satisfactory working conditions at all times.

1.12.1 Batching and Mixing Plant

1.12.1.1 Location of Batching and Mixing Plant

The batching and mixing plant shall be located on project site as indicated on the drawings in either Contractor Construction Laydown Area 1 or 2. There shall be operable telephonic or radio communication between the batching plant and the placing site at all times concreting is taking place.

1.12.1.2 Type and Capacity of Batching and Mixing Plant

The batching and mixing plant shall be a stationary-type plant. The plant shall be designed and operated to produce concrete within the specified tolerances, and shall have a capacity of at least 200 cubic meters per hour. The batching plant shall conform to the requirements of NRMCA CPMB 100 and as specified; however, rating plates attached to batch plant equipment are not required.

1.12.1.3 Equipment Requirements

The batching controls shall be either semiautomatic or automatic. Semiautomatic batching system shall be provided with interlocks. Separate bins or compartments shall be provided for each size group of aggregate and each cementitious material. Aggregates shall be weighed either in separate weigh batchers with individual scales or cumulatively in one weigh batcher on one scale, provided the fine aggregate is weighed first. Aggregate shall not be weighed in the same batcher with cementitious material. If both cement and pozzolan are used, they may be batched cumulatively, provided portland cement is batched first. Water shall not be weighed or measured

cumulatively with another ingredient. Water batcher filling and discharging valves shall be so interlocked that the discharge valve cannot be opened before the filling valve is fully closed. An accurate mechanical device for measuring and dispensing each chemical admixture shall be provided. Each dispenser shall be interlocked with the batching cycle and discharged automatically to obtain uniform distribution throughout the batch in the specified mixing period. Different chemical admixtures shall not be combined before introduction in water and cement. The plant shall be arranged to facilitate the inspection of all operations at all times. Suitable facilities shall be provided for obtaining representative samples of aggregates from each bin or compartment discharge.

1.12.1.4 Scales

Adequate facilities shall be provided for the accurate measurement and control of each of the materials entering each batch of concrete. The weighing equipment shall conform to the applicable requirements of NIST HB 44, except that the accuracy shall be within 0.2 percent of scale capacity. The Contractor shall provide standard test weights and any other auxiliary equipment required for checking the operating performance of each scale or other measuring device. Each weighing unit shall include a visible springless dial, which shall indicate the scale load at all stages of the weighing operation or shall include a beam scale with a beam balance indicator that will show the scale in balance at zero load and at any beam setting. The indicator shall have an over and under travel equal to at least 5 percent of the capacity of the beam. Approved electronic digital indicators and load cells may also be used. The weighing equipment shall be arranged to allow the concrete plant operator to conveniently observe the dials or indicators.

1.12.1.5 Batching Tolerances

The following tolerances shall apply.

Materials	Percentage of Required Mass
Cement (and Pozzolan)	plus or minus 1
Aggregate	plus or minus 2
Water	plus or minus 1
Admixture	plus or minus 3

For volumetric batching equipment for water and admixtures, the above numeric tolerances shall apply to the required volume of material being batched. Concentrated admixtures shall be uniformly diluted, if necessary, to provide sufficient volume per batch to ensure that the batchers will consistently operate within the above tolerance.

1.12.1.6 Moisture Control

The plant shall be capable of ready adjustment to compensate for the varying moisture contents of the aggregates and to change the quantities of the materials being batched. An electric moisture meter complying with the provisions of COE CRD-C 143 shall be provided for measuring of moisture in the fine aggregate. The sensing element shall be arranged so that

measurement is made near the batcher charging gate of the fine aggregate bin or in the fine aggregate batcher.

1.12.1.7 Recorders

A graphic or digital recorder conforming to the requirements of NRMCA CPMB 100 shall be furnished and kept operational at the batching plant.

1.12.2 Concrete Mixers

1.12.2.1 Stationary, Central Plant, Mixers

Stationary mixers shall be drum mixers of tilting horizontal-shaft type . Mixers shall be provided with an acceptable device to lock the discharge mechanism until the required mixing time has elapsed.

1.12.2.2 Mixing Time and Uniformity

a. Stationary Mixers: For stationary mixers, before uniformity data are available, the mixing time for each batch after all solid materials are in the mixer, provided that all of the mixing water is introduced before one-fourth of the mixing time has elapsed, shall be 1 minute for mixers having a capacity of 0.75 cubic meter. For mixers of greater capacity, this minimum time shall be increased 20 seconds for each additional cubic meter or fraction thereof. After results of uniformity tests are available, the mixing time may be reduced to the minimum time required to meet uniformity requirements; but if uniformity requirements are not being met, the mixing time shall be increased as directed. Mixer performance tests at new mixing times shall be performed immediately after any change in mixing time. When regular testing is performed, the concrete shall meet the limits of any five of the six uniformity requirements listed in Table 4, below. When abbreviated testing is performed, the concrete shall meet only those requirements listed for abbreviated testing. The concrete proportions used for uniformity tests shall be as used on the project. Regular testing shall consist of performing all six tests on three batches of concrete. The range for regular testing shall be the average of the ranges of the three batches. Abbreviated testing shall consist of performing the three required tests on a single batch of concrete. The range for abbreviated testing shall be the range for one batch. If more than one mixer is used and all are identical in terms of make, type, capacity, condition, speed of rotation, etc., the results of tests on one of the mixers shall apply to the others, subject to the approval of the Contracting Officer. All mixer performance (uniformity) testing shall be performed by the Contractor in accordance with COE CRD-C 55 and with paragraph titled TESTING AND INSPECTION FOR CONTRACTOR QUALITY CONTROL.

TABLE 4
UNIFORMITY REQUIREMENTS--STATIONARY MIXERS

	Regular Tests Allowable	Abbreviated Tests Allowable
Parameter	Maximum Range for Average of 3 Batches	Maximum Range for 1 Batch
Unit weight of air-fre mortar, kg/cubic meter		32
Air content, percent	1.0	
Slump, mm	25	
Coarse aggregate, perc	ent 6.0	6.0
Compressive strength a percent	t 7 days, 10.0	10.0
Water content, percent	1.5	

1.12.3 Transporting Equipment

Concrete shall be transported to the paving site in nonagitating equipment conforming to ASTM C 94/C 94M or in approved agitators. All transporting equipment shall be designed and operated to deliver and discharge the required concrete mixture completely without segregation.

1.12.4 Transfer and Spreading Equipment

Equipment for transferring concrete from the transporting equipment to the paving lane in front of the paver shall be specially manufactured, self-propelled transfer equipment which will accept the concrete outside the paving lane and will transfer and spread it evenly across the paving lane in front of the paver and strike off the surface evenly to a depth which permits the paver to operate efficiently. The travelling surge hopper shall be a specially manufactured, self-propelled transfer-placer which will operate in front of the paver and accept the concrete from the transporting equipment outside the paving lane, store it as necessary, and feed it out evenly across the lane in front of the paver at a depth which permits the paver to operate efficiently. The capacity shall be such that concrete is always available in front of the paver, to prevent the need for stopping the paver. It shall be designed to always discharge the oldest concrete remaining in the hopper before the fresher concrete.

1.12.5 Paver-Finisher

The paver-finisher shall be a heavy-duty, self-propelled machine designed specifically for paving and finishing high quality pavement. The paver-finisher shall weigh at least 3280 kg per m of lane width, and shall be powered by an engine having at least 15,000 W per meter of lane width. The paver-finisher shall spread, consolidate, and shape the plastic concrete to the desired cross section in one pass. The mechanisms for forming the pavement shall be easily adjustable in width and thickness and for required crown. In addition to other spreaders required by paragraph Transfer and

Spreading Equipment, the paver-finisher shall be equipped with a full width knock-down auger or paddle mechanism, capable of operating in both directions, which will evenly spread the fresh concrete in front of the screed or extrusion plate. Immersion vibrators shall be gang mounted at the front of the paver on a frame equipped with suitable controls so that all vibrators can be operated at any desired depth within the slab or completely withdrawn from the concrete, as required. The vibrators shall be automatically controlled so that they will be immediately stopped as forward motion of the paver ceases. The spacing of the immersion vibrators across the paving lane shall be as necessary to properly consolidate the concrete, but the clear distance between vibrators shall not exceed 750 mm Spud vibrators shall operate at a frequency of not less than 135 Hz and an amplitude of not less than 0.75 mm and tube vibrators at a frequency of not less than 80 Hz and an amplitude of not less than 0.75 mm, as determined by COE CRD-C 521. The paver-finisher shall be equipped with a transversely oscillating screed or an extrusion plate to shape, compact, and smooth the surface and shall so finish the surface that no significant amount of hand finishing, except use of cutting straightedges, is required. The screed or extrusion plate shall be constructed to provide adjustment for crown in the pavement. The entire machine shall provide adjustment for variation in lane width or thickness and to prevent more than 200 mm of the screed or extrusion plate extending over previously placed concrete on either end when paving fill-in lanes. Machines that cause displacement of properly installed forms or cause ruts or indentations in the prepared underlying materials and machines that cause frequent delays due to mechanical failures shall be replaced as directed.

1.12.5.1 Paver-Finisher with Fixed Forms

The paver-finisher shall be equipped with wheels designed to keep it aligned with the forms and to spread the load so as to prevent deformation of the forms.

1.12.5.2 Slipform Paver-Finisher

The slipform paver-finisher shall be automatically controlled and crawler mounted with four padded tracks so as to be completely stable under all operating conditions. The paver-finisher shall finish the surface and edges so that no edge slump beyond allowable tolerance occurs. Horizontal alignment shall be electronically referenced to a taut wire guideline. Vertical alignment shall be electronically referenced on both sides of the paver to a taut wire guideline, to an approved laser control system, or, only where permitted by paragraph Slipform Paving, to a ski operating on a completed lane. Suitable moving side forms shall be provided that are adjustable and will produce smooth, even edges, perpendicular to the top surface and meeting specification requirements for alignment and freedom from edge slump.

1.12.5.3 Longitudinal Mechanical Float

A longitudinal mechanical float shall be specially designed and manufactured to smooth and finish the pavement surface without working excess paste to the surface. It shall be rigidly attached to the rear of the paver-finisher or to a separate self-propelled frame spanning the paving lane. The float plate shall be at least 1.5 m long by 200 mm wide and shall automatically be oscillated in the longitudinal direction while slowly moving from edge to

Wheeler Sack Parallel Taxiway Fort Drum, New York

edge of the paving lane, with the float plate in contact with the surface at all times.

1.12.5.4 Nonrotating Pipe Float

A pipe float if used, shall be a nonrotating pipe 150 to 250 mm in diameter and sufficiently long to span the full paving width when oriented at an angle of approximately 60 degrees with the centerline. The pipe float shall be mounted on a self-propelled frame that spans the paving lane. No means of applying water to the surface shall be incorporated in the pipe float.

1.12.5.5 Other Types of Finishing Equipment

Clary screeds or other rotating tube floats, or bridge deck finishers, shall not be allowed on the project. Concrete finishing equipment of types other than specified above may be demonstrated on a test section outside the production pavement if approved in writing. If the Contracting Officer's representative decides from evaluation of the test section that the equipment is better than the specified finishing equipment, its use will be permitted as long as it continues to perform better than the specified equipment.

1.12.6 Curing Equipment

Equipment for applying membrane-forming curing compound shall be mounted on a self-propelled frame that spans the paving lane. The reservoir for curing compound shall be constantly mechanically (not air) agitated during operation and shall contain means for completely draining the reservoir. The spraying system shall consist of a mechanically powered pump which will maintain constant pressure during operation, an operable pressure gauge, and either a series of spray nozzles evenly spaced across the lane to give uniformly overlapping coverage or a single spray nozzle which is mounted on a carriage which automatically traverses the lane width at a speed correlated with the forward movement of the overall frame. All spray nozzles shall be protected with wind screens. Any hand-operated sprayers allowed by paragraph Membrane Curing shall be compressed air supplied by a mechanical air compressor. If the curing machine fails to apply an even coating of compound at the specified rate, it shall immediately be replaced.

1.12.7 Texturing Equipment

Texturing equipment shall be as specified below. Before use, the texturing equipment shall be demonstrated on a test section, and the equipment shall be modified as necessary to produce the texture directed.

1.12.7.1 Fabric Drag

A fabric drag shall consist of a piece of material as long as the lane width securely attached to a separate wheel mounted frame spanning the paving lane or to one of the other similar pieces of equipment. Width of the material shall provide 300 to 450 mm dragging flat on the pavement surface. Length shall be at least equal to the width of the slab plus 600 mm. The material shall be clean, reasonably new burlap, completely saturated with water before attachment to the frame and always resaturated before start of use and kept clean and saturated during use. Burlap shall conform to AASHTO M 182, Class 3 or 4.

1.12.8 Sawing Equipment

Equipment for sawing joints and for other similar sawing of concrete shall be standard diamond-type concrete saws mounted on a wheeled chassis which can be easily guided to follow the required alignment. Blades shall be diamond tipped. If demonstrated to operate properly, abrasive blades may be used. Wheel saws shall be saws with large diameter tungsten carbide tipped blades mounted on a heavy-duty chassis which will produce a saw kerf at least 40 mm wide. All saws shall be capable of sawing to the full depth required.

1.12.9 Straightedge

The Contractor shall furnish and maintain at the job site, in good condition, one 3.66 m straightedge for each paving train for testing the hardened portland cement concrete surfaces. These straightedges shall be constructed of aluminum or magnesium alloy and shall have blades of box or box-girder cross section with flat bottom, adequately reinforced to insure rigidity and accuracy. Straightedges shall have handles for operation on the pavement.

1.12.10 Profilograph

The Contractor shall furnish a 7.6 m profilograph for testing the finished pavement surface. The profilograph shall produce a record on tape of the results of testing the pavement surface and shall automatically mark the Profile Index of each section tested as well as indicate and measure each "must grind" point, all in accordance with CDT Test 526 and as required by paragraph Surface Smoothness.

PART 2 PRODUCTS

2.1 CEMENTITIOUS MATERIALS

Cementitious materials shall be portland cement or portland cement in combination with pozzolan and shall conform to appropriate specifications listed below. Temperature of cementitious materials as supplied to the project shall not exceed 65 degrees C.

2.1.1 Portland Cement

Portland cement shall conform to ASTM C 150, Type I, low-alkali.

2.1.2 Pozzolan (Fly Ash)

2.1.2.1 Fly Ash

Fly ash shall conform to ASTM C 618, Class F, including the optional requirements in Tables 1A and 2A, except that loss on ignition shall not exceed 3 percent. Class F fly ash, when used to mitigate alkali-aggregate reactivity, shall have a Calcium Oxide (CaO) content of less than 8 percent.

2.2 AGGREGATES

In addition to the grading requirements specified for coarse aggregate and for fine aggregate, the combined aggregate grading shall meet the following requirements.

- a. If necessary, a blending aggregate shall be used to meet the required combined grading. This blending aggregate shall be batched separately. The combined grading of all aggregates used, in the proportions selected, shall be computed on the basis of cumulative percent retained on each sieve specified for fine and coarse aggregate.
- b. The materials selected and the proportions used shall be such that when the Coarseness Factor (CF) and the Workability Factor (W) are plotted on a diagram as described in d. below, the point thus determined shall fall within the parallelogram described therein.
- c. The Coarseness Factor (CF) shall be determined from the following equation:
- CF = (cumulative percent retained on the 9.5 mm sieve)(100)/(cumulative percent retained on the 2.36 mm sieve)

The Workability Factor (W) is defined as the cumulative percent passing the 2.36~mm sieve. However, W shall be adjusted, upwards only, by 2.5~percentage points for each 42~kg of cementitious material per cubic meter greater than 335~kg per cubic meter.

- d. A diagram shall be plotted using a rectangular scale with W on the Y-axis with units from 20 (bottom) to 45 (top), and with CF on the X-axis with units from 80 (left side) to 30 (right side). On this diagram a parallelogram shall be plotted with corners at the following coordinates (CF-75, W-28), (CF-75, W-40), (CF-45, W-32.5), and (CF-45, W-41). If the point determined by the intersection of the computed CF and W does not fall within the above parallelogram, the grading of each size of aggregate used and the proportions selected shall be changed as necessary.
- e. In addition, the individual percent retained on each sieve shall be plotted for the combined aggregate grading, on either rectangular or semi-log graph paper. The graph shall show a relative smooth transition between coarse and fine aggregate and shall have no major valleys or peaks in the area smaller than the 23.6 mm sieve. If this plot does not meet the above criteria, the grading of each size aggregate used and the proportions selected shall be changed as necessary.

2.2.1 Aggregate Sources

Fine and coarse aggregates to be used in all concrete shall be evaluated and tested by the Contractor for alkali-aggregate reactivity in accordance with ASTM C 1260. Both coarse aggregate size groups shall be tested if from different sources. Test results shall have a measured expansion equal to or less than 0.08 percent at 16 days after casting. Should the test data indicate an expansion greater than 0.08 percent, the aggregate(s) shall be rejected, or additional testing, using a modified version of ASTM C 1260,

shall be performed by the Contractor as described below. ASTM C 1260 shall be modified as follows to include the following option:

a. Utilize the Contractor's proposed low alkali portland cement and Class F fly ash in combination for the test proportioning. Class F fly ash shall contain less than 8 percent Calcium Oxide (CaO) and shall be used in the range of 25 to 40 percent of the total cementitious material by mass. The quantity shall be determined that will meet all the requirements of these specifications and which will lower the expansion equal to or less than 0.08 percent at 16 days after casting.

If any of the above option does not lower the expansion equal to or less than 0.08 percent at 16 days after casting, the aggregate(s) shall be rejected and the Contractor shall submit new aggregate sources for retesting. The results of the testing shall be submitted to the Contracting Officer for evaluation and acceptance.

2.2.2 Coarse Aggregate

Coarse aggregate shall have a satisfactory service record of at least 5 years successful service in three paving projects or, if a new source is used, shall meet the requirements when tested for resistance to freezing and thawing.

2.2.2.1 Material Composition

Coarse aggregate shall consist of crushed stone.

2.2.2.2 Quality

Aggregates as delivered to the mixers shall consist of clean, hard, uncoated particles meeting the requirements of ASTM C 33 and other requirements specified herein. Coarse aggregate shall be washed. Washing shall be sufficient to remove dust and other coatings.

2.2.2.3 Particle Shape Characteristics

Particles of the coarse aggregate shall be generally spherical or cubical in shape. The quantity of flat and elongated particles in any size group shall not exceed 20 percent by weight as determined by COE CRD-C 119. A flat particle is defined as one having a ratio of width to thickness greater than 3; an elongated particle is one having a ratio of length to width greater than 3.

2.2.2.4 Size and Grading

The nominal maximum size of the coarse aggregate shall be 38 mm and shall meet the size groups below. When the nominal maximum coarse size is greater than 25 mm, the aggregates shall be furnished in two size groups as follows:

Nominal Maximum Size mm	Size Group
	
	ASTM C 33
19	No. 67 (4.75 to 19 mm)
	ASTM C 33

37.5 --No. 4 (19 to 37.5 mm)

The grading of the coarse aggregate within the separated size groups shall conform to the requirements of ASTM C 33, Sizes 67 and 4 as delivered to the mixer.

2.2.2.5 Deleterious Materials - Airfield Pavements

TABLE 5 LIMITS OF DELETERIOUS MATERIALS IN COARSE AGGREGATE FOR AIRFIELD PAVEMENTS

Percentage by Mass Areas with Major Popouts Severe Weather Materials Clay lumps and friable 0.2 particles (ASTM C 142) Shale (a) (ASTM C 295) 0.1 Material finer than 0.075 mm 0.5 (No. 200 sieve) (b) (ASTM C 117) Lightweight particles (c) 0.2 (ASTM C 123) Clay ironstone (d) 0.1 (ASTM C 295) Chert and cherty stone (less than 0.1 2.40 Mg/cubic meter density SSD (2.40 Sp. Gr.)) (e) (ASTM C 295) Claystone, mudstone, and 0.1 siltstone (f) (ASTM C 295) Shaly and argillaceous 0.2 limestone (g) (ASTM C 295) Other soft particles 1.0 COE CRD-C 130 Total of all deleterious 1.0 substances exclusive of material finer than 0.075 mm (No. 200 sieve)

- a. Shale is defined as a fine-grained, thinly laminated or fissile sedimentary rock. It is commonly composed of clay or silt or both. It has been indurated by compaction or by cementation, but not so much as to have become slate.
- b. Limit for material finer than 0.075 mm (No. 200 sieve) will be increased to 1.5 percent for crushed aggregates if the fine material consists of crusher dust that is essentially free from clay or shale.
- c. The separation medium shall have a density of $2.0\ \mathrm{Mg/cubic}$ meter (Sp. Gr. of 2.0).
- d. Clay ironstone is defined as an impure variety of iron carbonate, iron oxide, hydrous iron oxide, or combinations thereof, commonly mixed with clay, silt, or sand. It commonly occurs as dull, earthy particles, homogeneous concretionary masses, or hard-shell particles with soft interiors. Other names commonly used for clay ironstone are "chocolate bars" and limonite concretions.
- e. Chert is defined as a rock composed of quartz, chalcedony or opal, or any mixture of these forms of silica. It is variable in color. The texture is so fine that the individual mineral grains are too small to be distinguished by the unaided eye. Its hardness is such that it scratches glass but is not scratched by a knife blade. It may contain impurities such as clay, carbonates, iron oxides, and other minerals. Other names commonly applied to varieties of chert are: flint, jasper, agate, onyx, hornstone, porcellanite, novaculite, sard, carnelian, plasma, bloodstone, touchstone, chrysoprase, heliotrope, and petrified wood. Cherty stone is defined as any type of rock (generally limestone) that contains chert as lenses and nodules, or irregular masses partially or completely replacing the original stone.
- f. Claystone, mudstone, or siltstone, is defined as a massive fine-grained sedimentary rock that consists predominantly of indurated clay or silt without laminations or fissility. It may be indurated either by compaction or by cementation.
- g. Shaly limestone is defined as limestone in which shale occurs as one or more thin beds or laminae. These laminae may be regular or very irregular and may be spaced from a few inches down to minute fractions of an inch. Argillaceous limestone is defined as a limestone in which clay minerals occur disseminated in the stone in the amount of 10 to 50 percent by weight of the rock; when these make up from 50 to 90 percent, the rock is known as calcareous (or dolomitic) shale (or claystone, mudstone, or siltstone).

2.2.2.6 Testing Sequence Deleterious Materials -- Airfields Only

The size of the sample shall be at least 90 kg for the 19 to 37 mm size and 12 kg for the 4.75 to 19 mm coarse aggregate and 5 kg for the fine aggregate. The Contractor shall provide facilities for the ready procurement of representative test samples. Samples shall be taken and tested by and at the expense of the Contractor, using appropriate Corps of Engineers laboratory and ASTM test methods. Additional tests and analyses of aggregates at various stages in the processing and handling operations may be made by the Government at the discretion of the Contracting Officer. Such Government testing will not relieve the Contractor of any of its

Wheeler Sack Parallel Taxiway Fort Drum, New York

testing responsibilities. The testing procedure on each sample of coarse aggregate for compliance with limits on deleterious materials shall be as follows:

- Step 1: Test approximately one-fifth of sample for material finer than the 0.075 mm sieve.
- Step 2: Wash off material finer than 0.075 mm sieve from the remainder of the sample and recombine the remainder with material retained on the 0.075 mm sieve from Step 1.
- Step 3: Test remaining full sample for clay lumps and friable particles and remove.
- Step 4: Test remaining full sample for lightweight particles and remove, and then for chert and/or cherty stone with SSD density of less than 2.40 Mg/cubic meter (Sp. Gr. 2.40) and remove.
- Step 5: Test remaining sample for clay-ironstone, shale, claystone, mudstone, siltstone, shaly and/or argillaceous limestone, and remove.
- Step 6: Test approximately one-fifth of remaining full sample for other soft particles.

Determination of deleterious materials listed in Steps 4 and 5 shall be performed by an individual specifically trained in petrographic identification. The individual selected to perform the identification of these deleterious materials shall be subject to approval and, at least 10 days before any individual is proposed to commence this type of work, the Contractor shall submit a written resume, of the individual's training and experience for approval by the Corps of Engineers Material Testing Laboratory. The Contractor will not be entitled to any extension of time or additional payment due to any delays caused by the testing, evaluation, or personnel requirements.

2.2.2.7 Resistance to Freezing and Thawing

Coarse aggregate not having a satisfactory demonstrable service record shall have a durability factor of 50 or more when subjected to freezing and thawing in concrete in accordance with COE CRD-C 114.

2.2.2.8 Resistance to Abrasion

Coarse aggregate shall not show more than 40 percent loss when subjected to the Los Angeles abrasion test in accordance with ASTM C 131.

2.2.3 Fine Aggregate

Fine aggregate shall have a service record of at least 5 years satisfactory service in three paving projects or, if a new source is used, shall meet the requirements for resistance to freezing and thawing.

2.2.3.1 Composition

Fine aggregate shall consist of natural sand, manufactured sand, or a combination of the two, and shall be composed of clean, hard, durable particles. Irrespective of the source from which it is obtained, all fine

aggregate shall be composed of clean, hard, durable particles meeting the requirements of ASTM C 33. Each type of fine aggregate shall be stockpiled and batched separately. Any degree of contamination will be cause for the rejection of the entire stockpile.

2.2.3.2 Particle Shape

Particles of the fine aggregate shall be generally spherical or cubical in shape.

2.2.3.3 Grading

Grading of the fine aggregate, as delivered to the mixer, shall conform to the requirements of ASTM C 33. In addition, the fine aggregate, as delivered to the mixer, shall have a fineness modulus of not less than 2.50 nor more than 3.00. The grading of the fine aggregate also shall be controlled so that the fineness moduli of at least nine of every set of ten consecutive samples of the fine aggregate, as delivered to the mixer, will not vary more than 0.15 from the average fineness moduli of all samples previously taken. The fineness modulus shall be determined by COE CRD-C 104.

2.2.3.4 Deleterious Material

The amount of deleterious material in the fine aggregate shall not exceed the following limits by mass:

<u>Material</u>	Percentage by Mas	S
Clay lumps and friable particles ASTM C 142	1.0	ı
Material finer than 0.075 mm (No. 200 sieve) ASTI	M C 117 3.0	ı
Lightweight particles ASTM C 123 using a medium with a density of 2.0 Mg/cubic meter (Sp. Gr. of	0.5	!
Total of all above	3.0	ı

2.2.3.5 Resistance to Freezing and Thawing

Fine aggregate not having a satisfactory demonstrable service record shall have a durability factor of 50 or more when subjected to freezing and thawing in concrete in accordance with COE CRD-C 114.

2.3 CHEMICAL ADMIXTURES

2.3.1 Air-Entraining Admixtures

The air-entraining admixture shall conform to ASTM C 260 and shall consistently entrain the air content in the specified ranges under field conditions. The air-entraining admixture shall be in a solution of suitable concentration for field use.

2.3.2 Accelerator

An accelerator shall be used only when specified in paragraph SPECIFIED CONCRETE STRENGTH AND OTHER PROPERTIES and shall not be used to reduce the

Wheeler Sack Parallel Taxiway Fort Drum, New York

amount of cementitious material used. Accelerator shall conform to ASTM C 494/C 494M, Type C. Calcium chloride and admixtures containing calcium chloride shall not be used.

2.3.3 Retarder

A retarding admixture shall meet the requirements of ASTM C 494/C 494M, Type B, except that the 6-month and 1-year compressive strength tests are waived. The use of the admixture is at the option of the Contractor, but shall not be used to reduce the amount of cementitious material.

2.3.4 Water-Reducer

A water-reducing admixture shall meet the requirements of ASTM C 494/C 494M, Type A or D except that the 6-month and 1-year compressive strength tests are waived. The admixture may be added to the concrete mixture only when its use is approved or directed, and only when it has been used in mixture proportioning studies to arrive at approved mixture proportions.

2.4 CURING MATERIALS

2.4.1 Membrane Forming Curing Compound

Membrane forming curing compound shall be a white pigmented compound conforming to COE CRD-C 300.

2.4.2 Burlap

Burlap used for curing shall conform to AASHTO M 182, Class 3 or 4. Materials shall be new or shall be clean materials never used for anything other than curing concrete.

2.5 WATER

Water for mixing and curing shall be fresh, clean, potable, and free of injurious amounts of oil, acid, salt, or alkali, except that non-potable water may be used if it meets the requirements of COE CRD-C 400.

2.6 JOINT MATERIALS

2.6.1 Expansion Joint Material

Expansion joint filler shall be a preformed material conforming to ASTM D 1752 Type I, II, or III. Expansion joint filler shall be 20 mm thick.

2.6.2 Slip Joint Material

Slip joint material shall be 6 mm thick expansion joint filler conforming to ASTM D 1752.

2.7 REINFORCING

All reinforcement shall be free from loose, flaky rust, loose scale, oil, grease, mud, or other coatings that might reduce the bond with concrete. Removal of thin powdery rust and tight rust is not required. However, reinforcing steel which is rusted to the extent that it does not conform to the required dimensions or mechanical properties shall not be used.

2.7.1 Reinforcing Bars and Bar Mats

Reinforcing bars shall conform to ASTM A 615/A 615M, billet-steel, Grade 40 or 60. Bar mats shall conform to ASTM A 184/A 184M. The bar members shall be billet steel.

2.7.2 Welded Wire Fabric

Welded steel wire fabric shall conform to ASTM A 185.

2.7.3 Deformed Wire Fabric

Welded deformed steel wire fabric shall conform to ASTM A 497.

2.8 DOWELS

2.8.1 Dowels

Dowels shall be single piece bars fabricated or cut to length at the shop or mill before delivery to the site. Dowels shall be free of loose, flaky rust and loose scale and shall be clean and straight. Dowels may be sheared to length provided that the deformation from true shape caused by shearing does not exceed 1 mm on the diameter of the dowel and does not extend more than 1 mm from the end of the dowel. Dowels shall be plain (non-deformed) steel bars conforming to ASTM A 615/A 615M, Grade 40 or 60. Paint for dowels shall conform to MIL-DTL-24441/20.

2.8.2 Tie Bars

Tie bars shall be deformed steel bars conforming to ASTM A 615/A 615M, Grade 40 or 60, and of the sizes and dimensions indicated. Deformed high-strength billet bars, Grade 60 or higher, shall not be used for bars that are bent and straightened during construction.

2.9 EPOXY RESIN

All epoxy-resin materials shall be two-component materials conforming to the requirements of ASTM C 881, Class as appropriate for each application temperature to be encountered, except that in addition, the materials shall meet the following requirements:

- a. Material for use for embedding dowels and anchor bolts shall be $\mathsf{Type}\ \mathsf{IV},\ \mathsf{Grade}\ \mathsf{3}.$
- b. Material for use as patching materials for complete filling of spalls, wide cracks, and other voids and for use in preparing epoxy resin mortar shall be Type III, Grade as approved.
- c. Material for use for injecting cracks shall be Type IV, Grade 1.
- d. Material for bonding freshly mixed portland cement concrete or mortar or freshly mixed epoxy resin concrete or mortar to hardened concrete shall be Type V, Grade as approved.

2.10 SPECIFIED CONCRETE STRENGTH AND OTHER PROPERTIES

2.10.1 Specified Flexural Strength

Specified flexural strength, R, for concrete is 4.83 MPa at 90 days, as determined by tests made in accordance with ASTM C 78 of beams fabricated and cured in accordance with ASTM C 192/C 192M or as determined by equivalent flexural strength for acceptance as specified in paragraph, Flexural Strength. Maximum allowable water-cementitious material ratio is 0.45. The water-cementitious material ratio will be the equivalent watercement ratio as determined by conversion from the weight ratio of water to cement plus pozzolan, by the mass equivalency method described in ACI 211.1. The concrete shall be air-entrained with a total air content of 6 plus or minus 1.5 percentage points, at the point of placement. Air content shall be determined in accordance with ASTM C 231. The maximum allowable slump of the concrete at the point of placement shall be 50 mm for pavement constructed with fixed forms. For slipformed pavement, at the start of the project, the Contractor shall select a maximum allowable slump which will produce in-place pavement meeting the specified tolerances for control of edge slump.

2.10.2 Concrete Temperature

The temperature of the concrete as delivered shall conform to the requirements of paragraphs, Paving in Hot Weather and Paving in Cold Weather. Temperature of concrete shall be determined in accordance with ASTM C 1064/C 1064M.

2.10.3 Concrete Strength for Final Acceptance

The strength of the concrete will be considered acceptable when the average equivalent 90-day Flexural strengths for each lot are above the 'Specified Flexural Strength' as determined by correlation with 14-day compressive strength tests specified in paragraph MIXTURE PROPORTIONS BY CONTRACTOR for 90-day flexural Strength, and no individual set (2 cylinders per sublot) in the lot are 170 kPa or more below the equivalent 'Specified Flexural Strength'. If any lot or sublot, respectively, fails to meet the above criteria, the lot or sublot shall be removed and replaced at no additional cost to the Government. This is in addition to and does not replace the average strength required for day-to-day CQC operations as specified in paragraph Average Flexural Strength Required for Mixtures.

2.11 MIXTURE PROPORTIONS BY CONTRACTOR

2.11.1 Composition

Concrete shall be composed of cementitious material, water, fine and coarse aggregates, and admixtures. The cementitious material shall be portland cement or only portland cement in combination with pozzolan. Fly ash, if used with non alkali-reactive aggregates, shall consist of not less than 15 percent of the cementitious material by mass and not more than 35 percent. If Class F fly ash is required to mitigate potential alkali-aggregate reactivity, the percentage by mass determined from the modified ASTM C 1260 testing shall be used in the mixture proportioning studies. The minimum cementitious materials content shall not be less than 335 kg/cubic meter of concrete, and the minimum portland cement content shall not be less than 307 kg/cubic meter of concrete when fly ash is incorporated into the

mixture. Admixtures shall consist of air entraining admixture and may also include, as approved water-reducing admixture. If water-reducer is used, it shall be used only at the dosage determined during mixture proportioning studies. High range water-reducing admixtures and admixtures to produce flowable concrete shall not be used.

2.11.2 Concrete Proportioning Studies, Pavement Concrete

Trial design batches, mixture proportioning studies, and testing requirements shall be the responsibility of the Contractor. Mixture proportioning studies shall be performed by a commercial laboratory, inspected by the Government, and approved in writing. The laboratory performing the mixture proportioning shall conform with ASTM C 1077. Strength requirements during mixture proportioning studies shall be based on flexural strength as determined by test specimens fabricated in accordance with ASTM C 192/C 192M and tested in accordance with ASTM C 78. Samples of all materials used in mixture proportioning studies shall be representative of those proposed for use on the project and shall be accompanied by the manufacturer's or producer's test reports indicating compliance with these specifications. Trial mixtures having proportions, slumps, and air content suitable for the work shall be based on methodology described in ACI 211.1, modified as necessary to accommodate flexural strength.

2.11.2.1 Water-Cement Ratio

At least three different water-cement ratios, which will produce a range of strength encompassing that required on the project, shall be used. The maximum allowable water-cement ratio required in paragraph Maximum Water-Cement Ratio will be the equivalent water-cement ratio as determined by conversion from the mass ratio of water to cement plus pozzolan by the weight equivalency method as described in ACI 211.1. Laboratory trial mixtures shall be proportioned for maximum permitted slump and air content.

2.11.2.2 Trial Mixture Studies

Separate sets of trial mixture studies shall be made for each combination of cementitious materials and each combination of admixtures proposed for use. No combination of either shall be used until proven by such studies. Separate trial mixture studies shall also be made for concrete for any placing method proposed which requires special properties. The temperature of concrete in each trial batch shall be reported. Each mixture shall be designed to promote easy and suitable concrete placement, consolidation and finishing, and to prevent segregation and excessive bleeding. Concrete proportioning studies shall be performed using the following procedures:

2.11.2.3 Mixture Proportioning for 90-day Flexural Strength

The following step by step procedure shall be followed:

- a. Fabricate all beams and cylinders for each mixture from the same batch or blend of batches. Fabricate and cure all beams and cylinders in accordance with ASTM C 192/C 192M, using 152 x 152 mm beams and 152 x 305 mm cylinders.
- b. Test beams in accordance with ASTM C 78, cylinders in accordance with ASTM C 39/C 39M.

- c. Fabricate and cure test beams from each mixture for 7, 14, 28, 56, and 90-day flexural tests; 6 beams to be tested per age.
- d. Fabricate and cure test cylinders from each mixture for 7, 14, 28, 56, and 90-day compressive strength tests; 6 cylinders to be tested per age.
- e. Using the average strength for each w/c at each age, plot all results from each of the three mixtures on separate graphs for w/c versus:

7-day flexural strength 14-day flexural strength 28-day flexural strength 56-day flexural strength 90-day flexural strength

7-day compressive strength 14-day compressive strength 28-day compressive strength 56-day compressive strength 90-day compressive strength

- f. From these graphs select a w/c that will produce a mixture giving a 90-day flexural strength equal to the required strength determined in accordance with paragraph AVERAGE FLEXURAL STRENGTH REQUIRED FOR MIXTURES.
- g. Using the above selected w/c, select from the graphs the expected 7, 14, 28, 56, and 90-day flexural strengths and the expected 7, 14, 28 56, and 90-day compressive strengths for the mixture.
- h. From the above expected strengths for the selected mixture determine the following Correlation Ratios:
 - (1) Ratio of the 14-day compressive strength of the selected mixture to the 90-day flexural strength of the mixture (for acceptance).
 - (2) Ratio of the 7-day compressive strength of the selected mixture to the 90-day flexural strength of the mixture (for CQC control).
- i. If there is a change in materials, additional mixture design studies shall be made using the new materials and new Correlation Ratios shall be determined.
- j. No concrete pavement shall be placed until the Contracting Officer has approved the Contractor's mixture proportions.
- 2.11.3 Contractor Quality Control for Average Flexural Strength

The Contractor's day to day production shall be Controlled (CQC) in accordance with the criteria herein, in the following subparagraphs, and in par. 'Concrete Strength Testing for CQC'. This is entirely different from the acceptance requirements of par. 'Concrete Strength for Final Acceptance', and it is mandatory that both sets of requirements must be met.

If at any time, the 'equivalent average 90-day flexural strength', for any lot, as determined by correlation with results of 7-day compressive test specimens, is 476 kPa or more below the 'required equivalent average 90-day flexural strength', as specified below, the paving operation shall be stopped and the Contractor shall take necessary steps to improve the mixture proportioning, materials, or the batching and mixing to increase the strength. The paving operations shall not recommence until the Contracting Officer has approved the Contractor's Proposed changes in writing.

2.11.3.1 Average CQC Flexural Strength Required for Mixtures

In order to ensure meeting, the strength requirements specified in paragraph SPECIFIED CONCRETE STRENGTH AND OTHER PROPERTIES, during production, the mixture proportions selected during mixture proportioning studies and used during construction shall produce a required average CQC flexural strength exceeding the specified strength, R, by the amount indicated below. This required average CQC flexural strength, Ra, will be used only for CQC operations as specified in paragraph TESTING AND INSPECTION FOR CONTRACTOR QUALITY CONTROL and as specified in the previous paragraph. During production, the required Ra shall be adjusted (increased or decreased), as appropriate and as approved, based on the standard deviation of equivalent 90-day strengths being attained during paving.

a. From Previous Test Records: Where a concrete production facility has previous test records, a standard deviation shall be established in accordance with the applicable provisions of ACI 214.3R. Test records from which a standard deviation is calculated shall represent materials, quality control procedures, and conditions similar to those expected, shall represent concrete produced to meet a specified flexural strength or strengths within 1.034 MPa of the 90-day flexural strength specified for the proposed work, and shall consist of at least 30 consecutive tests. A strength test shall be the average of the strengths of two specimens made from the same sample of concrete and tested at 90 days. Required average CQC flexural strength, Ra, used as the basis for selection of concrete proportions shall be the value from the equation that follows, using the standard deviation as determined above:

Ra = R + 1.34S

Where: S = standard deviation

R = specified flexural strength

Ra = required average flexural strength

Where a concrete production facility does not have test records meeting the requirements above but does have a record based on 15 to 29 consecutive tests, a standard deviation shall be established as the product of the calculated standard deviation and a modification factor from the following table:

	MODIFICATION FACTOR
NUMBER OF TESTS	FOR STANDARD DEVIATION

	15	1.16
	20	1.08
	25	1.03
30	or more	1.00

b. Without Previous Test Records: When a concrete production facility does not have sufficient field strength test records for calculation of the standard deviation, the required average strength, Ra, shall be determined by adding 15 percent to the specified flexural strength, R.

PART 3 EXECUTION

3.1 PREPARATION FOR PAVING

Before commencing paving, the following shall be performed. Surfaces to receive concrete shall be prepared as specified below. If used, forms shall be in place, cleaned, coated, and adequately supported. Any reinforcing steel needed shall be at the paving site. All transporting and transfer equipment shall be ready for use, clean, and free of hardened concrete and foreign material. Equipment for spreading, consolidating, screeding, finishing, and texturing concrete shall be at the paving site, clean and in proper working order. All equipment and material for curing and for protecting concrete from weather or mechanical damage shall be at the paving site, in proper working condition, and in sufficient amount for the entire placement. When hot, windy conditions during paving appear probable, equipment and material shall be at the paving site to provide windbreaks, shading, fogging, or other action to prevent plastic shrinkage cracking or other damaging drying of the concrete.

3.2 CONDITIONING OF UNDERLYING MATERIAL

3.2.1 General Procedures

Underlying material, base course or subbase course, upon which concrete is to be placed shall be clean, damp, and free from debris, waste concrete or cement, frost, ice, and standing or running water. Prior to setting forms or placement of concrete, the underlying material shall be well drained and shall have been satisfactorily graded and uniformly compacted in accordance with the applicable Section of these specifications. The surface of the subgrade or base course shall be tested as to crown, elevation, and density in advance of setting forms or of concrete placement using slip-form techniques. High areas shall be trimmed to proper elevation. Low areas shall be filled and compacted to a condition similar to that of surrounding grade, or filled with concrete monolithically with the pavement. Where low areas are filled with concrete, the areas shall be marked, as approved, and cores for thickness determinations as required by paragraph, Flexural Strength and Thickness shall not be drilled in those areas. Any underlying material disturbed by construction operations shall be reworked and recompacted to specified density immediately in front of the paver. If a slipform paver is permitted and is used, the same underlying material under the paving lane shall be continued beyond the edge of the lane a sufficient distance and shall be thoroughly compacted and true to grade to provide a suitable trackline for the slipform paver and firm support for the edge of the paving lane. Where an open-graded granular base is required under the concrete, the Contractor shall select paving equipment and procedures which will operate properly on the base course without causing displacement or other damage.

3.2.2 Traffic on Underlying Material

After the underlying material has been prepared for concrete placement, no equipment shall be permitted thereon. Subject to specific approval, crossing of the prepared subgrade or base course at specified intervals for construction purposes may be permitted, provided rutting or indentations do not occur; however, if traffic has been allowed to use the prepared subgrade or base course, the surface shall be reworked and reprepared to the satisfaction of the Contracting Officer before concrete is placed.

3.3 WEATHER LIMITATIONS

3.3.1 Placement and Protection During Inclement Weather

The Contractor shall not commence placing operations when heavy rain or other damaging weather conditions appear imminent. At all times when placing concrete, the Contractor shall maintain on-site sufficient waterproof cover and means to rapidly place it over all unhardened concrete or concrete that might be damaged by rain. Placement of concrete shall be suspended whenever rain or other damaging weather commences to damage the surface or texture of the placed unhardened concrete, washes cement out of the concrete, or changes the water content of the surface concrete. All unhardened concrete shall be immediately covered and protected from the rain or other damaging weather. Any pavement damaged by rain or other weather shall be completely removed and replaced at the Contractor's expense as specified in paragraph, Repair, Removal, Replacement of Slabs.

3.3.2 Paving in Hot Weather

When the ambient temperature during paving is expected to exceed 32 degrees C, the concrete shall be properly placed and finished in accordance with procedures previously submitted and as specified herein. The concrete temperature at time of delivery to the forms shall not exceed the temperature shown in the table below when measured in accordance with ASTM C 1064/C 1064M. Cooling of the mixing water or aggregates or placing in the cooler part of the day may be required to obtain an adequate placing temperature. Steel forms and reinforcing shall be cooled as approved prior to concrete placement when steel temperatures are greater than 49 degrees C. Transporting and placing equipment shall be cooled or protected if necessary to maintain proper concrete-placing temperature. Concrete shall be placed continuously and rapidly at a rate of not less than 30 m of paving lane per hour. The finished surfaces of the newly laid pavement shall be kept damp by applying a fog spray (mist) with approved spraying equipment until the pavement is covered by the curing medium. If necessary, wind screens shall be provided to protect the concrete from an evaporation rate in excess of 1 kg/square meter per hour, as determined by method shown in Figure 2.1.5 of ACI 305R.

Maximum Allowable Concrete Placing Temperature

Relative Humidity, Percent, During Time of Concrete Placement	Maximum Allowable Concrete Temperature in Degrees C		
Greater than 60	33		
40-60	30		
Less than 40	2.7		

3.3.3 Prevention of Plastic Shrinkage Cracking

During weather with low humidity, and particularly with appreciable wind, the Contractor shall develop and institute measures to prevent plastic shrinkage cracks from developing. Particular care shall be taken if plastic shrinkage cracking is potentially imminent and especially if it has developed during a previous placement. Periods of high potential for plastic shrinkage cracking can be anticipated by use of Fig. 2.1.5 of ACI 305R. In addition to the protective measures specified in the previous paragraph, the concrete placement shall be further protected by erecting shades and windbreaks and by applying fog sprays of water, sprinkling, ponding, or wet covering. When such water treatment is stopped, curing procedures shall be immediately commenced. Plastic shrinkage cracks that occur shall be filled by injection of epoxy resin as directed, after the concrete hardens. Plastic shrinkage cracks shall never be troweled over or filled with slurry.

3.3.4 Paving in Cold Weather

Special protection measures, as submitted and approved, and as specified herein, shall be used if freezing temperatures are anticipated before the expiration of the specified curing period. The ambient temperature of the air at the placing site and the temperature of surfaces to receive concrete shall be not less 5 degrees C. However, placement may begin when both the ambient temperature and the temperature of the underlying material are at least 2 degrees C and rising. When the ambient temperature is less than 10 degrees C, the temperature of the concrete when placed shall be not less than 10 degrees C nor more than 25 degrees C. Heating of the mixing water or aggregates will be required to regulate the concrete placing temperature. Materials entering the mixer shall be free from ice, snow, or frozen lumps. Salt, chemicals or other materials shall not be incorporated in the concrete to prevent freezing. Upon written approval, chemical admixture conforming to ASTM C 494/C 494M Type C or E may be used provided it contains no calcium chloride. Calcium chloride shall not be used at any time. Covering and other means shall be provided for maintaining the concrete at a temperature of at least 10 degrees C for not less than 72 hours after placing, and at a temperature above freezing for the remainder of the curing period. Pavement damaged by freezing shall be completely removed and replaced at the Contractor's expense as specified in paragraph REPAIR, REMOVAL, REPLACEMENT OF SLABS.

3.4 CONCRETE PRODUCTION

Batching, mixing, and transporting equipment shall have a capacity sufficient to maintain a continuous, uniform forward movement of the paver of not less than 0.8 m per minute. Concrete shall be deposited in front of the paver within 45 minutes from the time cement has been charged into the mixing drum, except that if the ambient temperature is above 32 degrees C, the time shall be reduced to 30 minutes. No water shall be added to the concrete after it is batched. Every load of concrete delivered to the paving site shall be accompanied by a batch ticket from the operator of the batching plant. Tickets shall be on approved forms and shall show at least the mass, or volume, of all ingredients in each batch delivered and the time of day. Tickets shall be delivered to the placing foreman who shall keep them on file and deliver them to the Government weekly.

3.4.1 Batching and Mixing Concrete

The batching and mixing equipment and the operation thereof shall conform to the requirements of paragraph EQUIPMENT and as specified herein. All equipment shall be kept clean and in operable condition at all times. Scale pivots and bearings shall be kept clean and free of rust. Any equipment which fails to perform as specified shall immediately be removed from use until properly repaired and adjusted, or replaced.

3.4.2 Transporting and Transfer - Spreading Operations

The transporting and transfer equipment and the operation thereof shall conform to the requirements of paragraph EQUIPMENT and as specified herein. All equipment shall be kept clean and in operable condition at all times. Non-agitating equipment shall be used only on smooth roads and for haul time less than 15 minutes at all times during the work day. No transporting equipment shall be allowed to operate on the prepared and compacted underlying material in front of the paver-finisher. Equipment shall be allowed to operate on the underlying material only if approved in writing and only if no damage is done to the underlying material and its degree of compaction. Any disturbance to the underlying material that does occur shall be corrected, as approved, before the paver-finisher or the deposited concrete reaches the location of the disturbance and the equipment shall be replaced or procedures changed to prevent any future damage. An approved transfer spreader shall be used to transfer the concrete from hauling equipment outside the paving lane and to spread it evenly and strike it off to approximate grade in front of the paver-finisher. A travelling surge hopper shall be used to accept the concrete from the transporting equipment, store it as necessary, and feed it evenly across the paving lane at a depth which permits the paver to operate efficiently and at a rate that permits the paver to have a continuous forward movement. Concrete shall be deposited as close as possible to its final position in the paving lane. All equipment shall be operated to discharge and transfer concrete without segregation. In no case shall dumping of concrete in discrete piles be permitted. No transfer or spreading operation which requires the use of front-end loaders, dozers, or similar equipment to distribute the concrete will be permitted. All batching and mixing, transporting, transferring, paving, and finishing shall be properly coordinated and controlled such that the paver-finisher has a continuous forward movement at a reasonably uniform speed from beginning to end of each paving lane, except for inadvertent equipment breakdown. Failure to achieve this shall require the Contractor to halt operations, regroup, and modify operations to achieve this requirement.

3.5 PAVING

3.5.1 General Requirements

The paving and finishing equipment and the operation thereof shall conform to the requirements of paragraph EQUIPMENT and as specified herein. All equipment shall be kept clean and properly operable at all times. Pavement shall be constructed with paving and finishing equipment utilizing rigid fixed forms or by use of slipform paving equipment. Paving and finishing equipment and procedures shall be capable of constructing paving lanes of the required width at a rate of at least 30 m of paving lane per hour on a routine basis. Paving equipment and its operation shall be controlled, and coordinated with all other operations, such that the paver-finisher has a

continuous forward movement, at a reasonably uniform speed, from beginning to end of each paving lane, except for inadvertent equipment breakdown. Workmen with foreign material on their footwear or construction equipment that might deposit foreign material shall not be permitted to walk or operate in the plastic concrete.

3.5.2 Consolidation

Concrete shall be consolidated with the specified type of lane-spanning, gang-mounted, mechanical, immersion type vibrating equipment mounted in front of the paver, supplemented, in rare instances as specified, by handoperated vibrators. Gang-mounted vibrator spuds shall be spaced so as to thoroughly consolidate the entire paving lane, but not more than 750 mm spacing, and with the outside vibrators not more than 300 mm from the edge of the lane. The vibrators shall be inserted into the concrete to a depth that will provide the best full-depth consolidation but not closer to the underlying material than 50 mm. The vibrators or any tamping units in front of the paver shall be automatically controlled so that they shall be stopped immediately as forward motion ceases. Excessive vibration shall not be permitted. If the vibrators cause visible tracking in the paving lane, the paving operation shall be stopped and equipment and operations modified to prevent it. Concrete in small, odd-shaped slabs or in isolated locations inaccessible to the gang-mounted vibration equipment shall be vibrated with an approved hand-operated immersion vibrator. Vibrators shall not be used to transport or spread the concrete. Hand-operated vibrators shall not be operated in the concrete at one location for more than 20 seconds. For each paving train, at least one additional vibrator spud, or sufficient parts for rapid replacement and repair of vibrators shall be maintained at the paving site at all times. Any evidence of inadequate consolidation (honeycomb along the edges, large air pockets, or any other evidence) shall require the immediate stopping of the paving operation and approved adjustment of the equipment or procedures.

3.5.3 Operation

When the paver approaches a header at the end of a paving lane, a sufficient amount of concrete shall be maintained ahead of the paver to provide a roll of concrete which will spill over the header. The amount of extra concrete shall be sufficient to prevent any slurry that is formed and carried along ahead of the paver from being deposited adjacent to the header. The spud vibrators in front of the paver shall be brought as close to the header as possible before they are lifted. Additional consolidation shall be provided adjacent to the headers by hand-manipulated vibrators. When the paver is operated between or adjacent to previously constructed pavement (fill-in lanes), provisions shall be made to prevent damage to the previously constructed pavement. Transversely oscillating screeds and extrusion plates shall overlap the existing pavement the minimum possible, but in no case more than 200 mm. These screeds or extrusion plates shall be electronically controlled from the previously placed pavement so as to prevent them from applying pressure to the existing pavement and to prevent abrasion of the pavement surface. The overlapping area of existing pavement surface shall at all times be kept completely free of any loose or bonded foreign material as the paver-finisher operates across it. When the paver travels on existing pavement, approved provisions shall be made to prevent damage to the existing pavement. Pavers using transversely oscillating screeds shall not be used to form fill-in lanes that have widths less than a full width for which the paver was designed or adjusted.

3.5.4 Required Results

The paver-finisher, and its gang-mounted vibrators, together with its operating procedures shall be adjusted and operated and coordinated with the concrete mixture being used to produce a thoroughly consolidated slab throughout, true to line and grade within specified tolerances. The screed or the extrusion plate shall be properly adjusted to produce a pavement surface true to line and grade. Any necessary adjustment to compensate for surging behind the screed or for inadequate height of surface after paving shall be carefully made and checked frequently. The paver-finishing operation shall produce a surface finish free of irregularities, tears, voids of any kind, and any other discontinuities. It shall produce only a very minimum of paste at the surface; never more than 2.5 mm cover over the top layer of coarse aggregate. The paver-finisher shall make only one pass across the pavement; multiple passes will not be permitted. The equipment and its operation shall produce a finished surface requiring no hand finishing other than the use of cutting straightedges, except in very infrequent instances. If any equipment or operation fails to produce the above results, the paving shall be stopped, the equipment shall be replaced or properly adjusted, the operation shall be appropriately modified, or the mixture proportions modified, in order to produce the required results before recommencing paving. No water, other than true fog sprays (mist) as specified in paragraph, Prevention of Plastic Shrinkage Cracking, shall be applied to the concrete or the concrete surface during paving and finishing.

3.5.5 Fixed Form Paving

Paving equipment for fixed-form paving and the operation thereof shall conform to the requirements of paragraph EQUIPMENT, all requirements specified above under paragraph PAVING and as specified herein.

3.5.5.1 Forms for Fixed-Form Paving

a. Forms shall be steel, except that wood forms may be used for curves having a radius of 45 m or less, and for fillets. Forms shall be equal in depth to the edge thickness of the slab as shown on the drawings. Forms shall be in one piece for the full depth required, except as permitted below. Under no conditions shall forms be adjusted by filling or excavating under the forms to an elevation other than the bottom of the pavement slab. Where the project requires several different slab thicknesses, forms may be built up with metal or wood to provide an increase in depth of not more than 25 percent. The required form depth may be obtained by securely bolting or welding to the bottom of the form a tubular metal section of the proper thickness or by securely bolting wood planks to the bottom of the form. The tubular metal section or wood planks shall completely cover the underside of the base of the form and shall extend beyond the edge of the base a sufficient distance to provide the necessary stability. The base width of the one-piece form, or built-up form, shall be not less than eighttenths of the vertical height of the form, except that forms 200 mm or less in vertical height shall have a base width not less than the vertical height of the form. Forms shall not be built-up by adding to the top. The top surface of each form section shall not vary more than 1.5 mm in 4 m from a true line. The face of the form shall not vary more than 5 mm in 4 m from a true plane. Forms with battered top surfaces or distorted faces or bases shall be removed from the project.

Where keyway forms are required, they shall be rigidly attached to the main form so no displacement can take place. Metal keyway forms shall be tack-welded to steel forms. Keyway forms shall be so aligned that there is no variation over 6 mm either vertically or horizontally, when tested with a 4 m template after forms are set, including tests across form joints.

- b. Steel forms shall be furnished in sections not less than 3 m in length, except that on curves having a radius of 45 m or less, the length of the sections shall be 1.5 m unless the sections are flexible or curved to the proper radius. Each 3 m length of form shall be provided with at least three form braces and pin sockets so spaced that the form will be rigidly braced throughout its length. Lock joints between form sections shall be free from play or movement. Forms shall be free of warps, bends, or kinks.
- c. Wood forms for curves and fillets shall be made of well-seasoned, surfaced plank or plywood, straight, and free from warp or bend. Wood forms shall be adequate in strength and rigidly braced.
- d. The forms shall be set on firm material cut true to grade so that each form section when placed will be firmly in contact with the underlying layer for its entire length and base width. Underlying material shall be thoroughly compacted and trimmed to grade before forms are set in place. Setting forms on blocks or on built-up spots of underlying material will be not permitted under any condition. The form sections shall be staked into position and tightly locked together. The length of pins and quantity provided in each section shall be sufficient to hold the form at the correct line and grade. When tested with a straightedge, the top of the installed form shall conform to the requirements specified for the finished surface of the concrete, and the longitudinal axis of the upstanding leg shall not vary more than 6 mm from the straightedge. Conformity to the alignment and grade elevations shown on the drawings shall be checked and necessary corrections shall be made immediately prior to placing the concrete. Forms shall be set well in advance of concrete placement. The forms shall be cleaned and oiled each time before concrete is placed. No concrete shall be placed until setting of forms has been checked and approved by the CQC team.

3.5.5.2 Form Removal

Forms shall remain in place at least 12 hours after the concrete has been placed. When conditions are such that the early strength gain of the concrete is delayed, the forms shall be left in place for a longer time, as directed. Forms shall be removed by procedures that do not injure the concrete. Bars or heavy metal tools shall not be used directly against the concrete in removing the forms. Any concrete found to be defective after form removal shall be repaired promptly, using procedures specified hereinafter or as directed.

3.5.6 Slipform Paving

3.5.6.1 General

Paving equipment for slipform paving and the operation thereof shall conform to the requirement of paragraph EQUIPMENT, all requirements specified above

in subparagraphs, General, Consolidation, Operation, and Required Results, and as specified herein. The slipform paver shall shape the concrete to the specified and indicated cross section, meeting all tolerances, in one pass. The slipform paver shall finish the surface and edges so that only a very minimum isolated amount of hand finishing is required. If the paving operation does not meet the above requirements and the specified tolerances, the operation shall be immediately stopped, and the Contractor shall regroup and replace or modify any equipment as necessary, modify paving procedures or modify the concrete mix, in order to resolve the problem. The slipform paver shall be automatically electronically controlled from a taut wire guideline for horizontal alignment and on both sides from a taut wire guideline for vertical alignment, except that electronic control from a ski operating on a previously constructed adjoining lane shall be used where applicable for either or both sides. Automatic, electronic controls for vertical alignment shall always be used on both sides of the lane. Control from a slope-adjustment control or control operating from the underlying material shall never be used. If approved by the Contracting Officer after a preconstruction demonstration, automatic laser controls may be used in lieu of or to supplement the taut wire quidelines. Side forms on slipform pavers shall be properly adjusted so that the finished edge of the paving lane meets all specified tolerances. Dowels in longitudinal construction joints shall be installed as specified below. The installation of these dowels by dowel inserters attached to the paver or by any other means of inserting the dowels into the plastic concrete shall not be permitted.

3.5.6.2 Guideline for Slipform Paving

Guidelines shall be accurately and securely installed well in advance of concrete placement. Supports shall be provided at necessary intervals to eliminate all sag in the guideline when properly tightened. The guideline shall be high strength wire set with sufficient tension to remove all sag between supports. Supports shall be securely staked to the underlying material or other provisions made to ensure that the supports will not be displaced when the guideline is tightened or when the guideline or supports are accidentally touched by workmen or equipment during construction. The appliances for attaching the quideline to the supports shall be capable of easy adjustment in both the horizontal and vertical directions. When it is necessary to leave gaps in the guideline to permit equipment to use or cross underlying material, provisions shall be made for guickly and accurately replacing the quideline without any delay to the forward progress of the paver. Supports on either side of the gap shall be secured in such a manner as to avoid disturbing the remainder of the guideline when the portion across the gap is positioned and tightened. The guideline across the gap and adjacent to the gap for a distance of 60 m shall be checked for horizontal and vertical alignment after the guideline across the gap is tightened. Vertical and horizontal positioning of the guideline shall be such that the finished pavement shall conform to the alignment and grade elevations shown on the drawings within the specified tolerances for grade and smoothness. The specified tolerances are intended to cover only the normal deviations in the finished pavement that may occur under good supervision and do not apply to setting of the guideline. The guideline shall be set true to line and grade.

3.5.6.3 Laser Controls

If the Contractor proposes to use any type of automatic laser controls, a detailed description of the system shall be submitted and a trial field

demonstration shall be performed in the presence of the Contracting Officer at least one week prior to start of paving. Approval of the control system will be based on the results of the demonstration and on continuing satisfactory operation during paving.

3.5.7 Placing Reinforcing Steel

The type and amount of steel reinforcement shall be as shown on the drawings. For pavement thickness of 300 mm or more, the reinforcement steel shall be installed by the strike-off method wherein a layer of concrete is deposited on the underlying material, consolidated, and struck to the indicated elevation of the steel reinforcement. The reinforcement shall be laid upon the prestruck surface, and the remaining concrete shall then be placed and finished in the required manner. When placement of the second lift causes the steel to be displaced horizontally from its original position, provisions shall be made for increasing the thickness of the first lift and depressing the reinforcement into the unhardened concrete to the required elevation. The increase in thickness shall be only as necessary to permit correct horizontal alignment to be maintained. Any portions of the bottom layer of concrete that have been placed more than 30 minutes without being covered with the top layer shall be removed and replaced with newly mixed concrete without additional cost to the Government. For pavements less than 300 mm thick, the reinforcement shall be positioned on suitable chairs securely fastened to the subgrade prior to concrete placement. Concrete shall be vibrated after the steel has been placed. Regardless of placement procedure, the reinforcing steel shall be free from coatings which could impair bond between the steel and concrete, and laps in the reinforcement shall be as indicated. In lieu of the above, automatic reinforcement depressing attachments may be used to position the reinforcement, either bar mats or welded wire fabric, provided the entire operation is approved by the Contracting Officer. Regardless of the equipment or procedures used for installing reinforcement, the Contractor shall ensure that the entire depth of concrete is adequately consolidated.

3.5.8 Placing Dowels and Tie Bars

The method used in installing and holding dowels in position shall ensure that the error in alignment of any dowel from its required alignment after the pavement has been completed will not be greater than 1 mm per 100 mm Except as otherwise specified below, location of dowels shall be within a horizontal tolerance of plus or minus 15 mm. The Contractor shall furnish an approved template for checking the alignment and position of the dowels. The portion of each dowel intended to move within the concrete or expansion cap shall be painted with one coat of the specified paint. When dry, the painted portion shall be wiped clean and coated with a thin, even film of lubricating oil before the concrete is placed. Pipe used as dowels shall be filled with a stiff sand-asphalt mixture or portland-cement mortar. Dowels in joints shall be omitted when the center of the dowel is located within a horizontal distance from an intersecting joint equal to or less than one-fourth of the slab thickness. Dowels shall be installed as specified in the following subparagraphs.

3.5.8.1 Contraction Joints

Dowels in longitudinal and transverse contraction joints within the paving lane shall be held securely in place, as indicated, by means of rigid metal frames or basket assemblies of an approved type. The assemblies shall

consist of a framework of metal bars or wires arranged to provide rigid support for the dowels throughout the paving operation, with a minimum of four continuous bars or wires extending along the joint line. The dowels shall be welded to the assembly or held firmly by mechanical locking arrangements that will prevent them from rising, sliding out, or becoming distorted during paving operations. The basket assemblies shall be held securely in the proper location by means of suitable pins or anchors.

3.5.8.2 Construction Joints-Fixed Form Paving

Installation of dowels shall be by the bonded-in-place method. Installation by removing and replacing in preformed holes will not be permitted. Dowels shall be prepared and placed across joints where indicated, correctly aligned, and securely held in the proper horizontal and vertical position during placing and finishing operations, by means of devices fastened to the forms. The spacing of dowels in construction joints shall be as indicated, except that, where the planned spacing cannot be maintained because of form length or interference with form braces, closer spacing with additional dowels shall be used.

3.5.8.3 Dowels Installed in Hardened Concrete

Dowels installed in hardened concrete, such as in longitudinal construction joints for slipform paving, in joints between new and existing pavement, and similar locations, shall be installed by bonding the dowels into holes drilled into the hardened concrete. The installation of dowels in longitudinal construction joints by dowel inserters attached to a slipform paver or by any other means of inserting the dowels into the plastic concrete shall not be permitted. However, when paving two lanes together with a longitudinal contraction joint between, any dowels required may be installed in this joint with an approved inserter. Holes approximately 3 mm greater in diameter than the dowels shall be drilled into the hardened concrete with rotary core drills to receive the dowels. In lieu of rotary drills, the contractor may use percussion drills, provided that spalling at the collar of the hole does not occur. Regardless of the type of drill used, the drill shall be held rigidly in exact alignment by means of a stable jig or framework, solidly supported; gang drills meeting this are acceptable. Any damage to the concrete face during drilling shall be repaired as directed; continuing damage shall require modification of the equipment and operation. Dowels shall be bonded in the drilled holes using epoxy resin. Epoxy resin shall be injected at the back of the hole before installing the dowel and extruded to the collar during insertion of the dowel so as to completely fill the void around the dowel. Application by buttering the dowel shall not be permitted. The dowels shall be held in alignment at the collar of the hole, after insertion and before the grout hardens, by means of a suitable metal or plastic collar fitted around the dowel. The vertical alignment of the dowels shall be checked by placing a straightedge on the surface of the pavement over the top of the dowel and measuring the vertical distance between the straightedge and the beginning and ending point of the exposed part of the dowel. The horizontal alignment shall be checked with a framing square. Dowels required to be installed in any joints between new and existing concrete shall be grouted in holes drilled in the existing concrete, all as specified above.

3.5.8.4 Expansion Joints

Dowels in expansion joints shall be installed as shown using appropriate procedures specified above.

3.6 FINISHING

The finishing machine, or paver-finisher, shall meet all requirements specified in paragraph EQUIPMENT and herein. Finishing operations shall be a continuing part of placing operations starting immediately behind the strike-off of the paver and the machines shall be designed and operated to strike off, screed, and consolidate the concrete. Initial finishing shall be provided by the transverse screed or extrusion plate. The sequence of operations shall be transverse finishing, longitudinal machine floating if used, straightedge finishing, texturing, and then edging of joints. Finishing shall be by the machine method. The hand method shall be used only infrequently and only on isolated areas of odd slab widths or shapes and in the event of a breakdown of the mechanical finishing equipment. When approved, the hand finishing method may also be used for separate, isolated slabs during removal and replacement type repair operations. Supplemental hand finishing for machine finished pavement shall be kept to an absolute minimum. Equipment to be used for supplemental hand finishing shall primarily be 3 to 4 m cutting straightedges; only very sparing use of bull floats shall be allowed. Any machine finishing operation which requires appreciable hand finishing, other than a moderate amount of straightedge finishing, shall be immediately stopped and proper adjustments made or the equipment replaced. Every effort shall be made to prevent bringing excess paste to the surface and any operations which produce more than 2.5 mm of paste (mortar, water, laitance, etc.) over the top layer of coarse aggregate shall be halted immediately and the equipment, mixture, or procedures modified as necessary. Compensation shall be made for surging behind the screeds or extrusion plate and settlement during hardening and care shall be taken to ensure that paving and finishing machines are properly adjusted so that the finished surface of the concrete (not just the cutting edges of the screeds) will be at the required line and grade. Surface checks shall be made regularly and paving operations immediately halted and adjustments made whenever compensation is inadequate. Screed and float adjustments of the machines shall be checked at the start of each day's paving operations and more often if required. Machines that cause frequent delays due to mechanical failure shall be replaced. When machines ride the edge of a previously constructed slab, the edge shall be kept clean and provision shall be made to protect the surface of the slab. Clary screeds, "bridge deck" finishers, or other rotating pipe or tube type equipment will not be permitted. Finishing equipment and tools shall be maintained clean and in an approved condition. At no time shall water be added to the surface of the slab with the finishing equipment or tools, or in any other way, except for fog (mist) sprays specified to prevent plastic shrinkage cracking.

3.6.1 Longitudinal Floating

When the equipment contains a mechanical, longitudinal, oscillating float, the float shall be operated to smooth and finish the pavement immediately behind the transverse screed or extrusion plate. The float shall be operated maintaining contact with the surface at all times. Care shall be taken to prevent working paste to the surface in excess of the amount specified above.

3.6.2 Other Types of Finishing Equipment

Concrete finishing equipment of types other than those specified above may be used on a trial basis, when specifically approved, except that rotating pipe or tubes or bridge deck finishers will not be permitted. Approval will be given after demonstration on a test section prior to start of construction, and provided the Contracting Officer determines that the pavement produced is better than that produced by the specified equipment. The use of equipment that fails to produce finished concrete of the required quality, using concrete proportions and slump as specified, shall be discontinued, and the concrete shall be finished with specified equipment and in the manner specified above. Vibrating screeds or pans shall be used only for isolated slabs where hand finishing is permitted as specified, and only where specifically approved. Slipform paving equipment shall not be operated on fixed forms unless approved in writing prior to use.

3.6.3 Machine Finishing With Fixed Forms

The machine shall be designed to ride the forms and shall be operated to screed and consolidate the concrete. Machines that cause displacement of the forms shall be replaced. The machine shall make only one pass over each area of pavement. If the equipment and procedures do not produce a surface of uniform texture, true to grade, in one pass, the operation shall be immediately stopped and the equipment, mixture, and procedures adjusted as necessary.

3.6.4 Machine Finishing With Slipform Pavers

The slipform paver shall be operated so that only a very minimum of additional finishing work is required to produce pavement surfaces and edges meeting the specified tolerances. Any equipment or procedure that fails to meet these specified requirements shall immediately be replaced or modified as necessary. A self-propelled nonrotating pipe float may be used if the Contractor desires while the concrete is still plastic, to remove minor irregularities and score marks. The pipe float shall be 150 to 250 mm in diameter and sufficiently long to span the full paving width when oriented at an angle of approximately 60 degrees with the center line. Only one pass of the pipe float shall be allowed. If there is sufficient concrete slurry or fluid paste on the surface that it runs over the edge of the pavement, the paving operation shall be immediately stopped and the equipment, mixture, or operation modified to prevent formation of such slurry. Any slurry which does run down the vertical edges shall be immediately removed by hand, using stiff brushes or scrapers. No slurry, concrete or concrete mortar shall be used to build up along the edges of the pavement to compensate for excessive edge slump, either while the concrete is plastic or after it hardens. Slabs having areas of edge slump in excess of the specified tolerances shall be removed and replaced in accordance with paragraph, REPAIR, REMOVAL, REPLACEMENT OF SLABS; repair operations on such areas will not be permitted.

3.6.5 Surface Correction and Testing

After all other finishing is completed but while the concrete is still plastic, minor irregularities and score marks in the pavement surface shall be eliminated by means of cutting straightedges. Such straightedges shall be 4 m in length and shall be operated from the sides of the pavement and from bridges. A straightedge operated from the side of the pavement shall

be equipped with a handle 1 m longer than one-half the width of the pavement. The surface shall then be tested for trueness with a straightedge held in successive positions parallel and at right angles to the center line of the pavement, and the whole area covered as necessary to detect variations. The straightedge shall be advanced along the pavement in successive stages of not more than one-half the length of the straightedge. Depressions shall be immediately filled with freshly mixed concrete, struck off, consolidated, and refinished. Projections above the required elevation shall also be struck off and refinished. The straightedge testing and finishing shall continue until the entire surface of the concrete is free from observable departure from the straightedge and conforms to the surface requirements specified in paragraph ACCEPTABILITY OF WORK AND PAYMENT ADJUSTMENTS. Long-handled, flat bull floats shall be used very sparingly and only as necessary to correct minor, scattered surface defects. If frequent use of bull floats is necessary, the paving operation shall be stopped and the equipment, mixture or procedures adjusted to eliminate the surface defects. Finishing with hand floats and trowels shall be held to the absolute minimum necessary. Extreme care shall be taken to prevent overfinishing joints and edges. The surface finish of the pavement shall be produced essentially by the finishing machine and not by subsequent hand finishing operations. All hand finishing operations shall be subject to approval and shall be modified when directed. No water shall be added to the pavement surface during these operations.

3.6.6 Hand Finishing

Hand finishing operations shall be used only as specified above.

3.6.6.1 Equipment

In addition to approved mechanical internal vibrators for consolidating the concrete, a strike-off and tamping template and a longitudinal float shall be provided for hand finishing. The template shall be at least 300 mm longer than the width of pavement being finished, of an approved design, and sufficiently rigid to retain its shape, and shall be constructed of metal or other suitable material shod with metal. The longitudinal float shall be at least 3 m long, of approved design, and rigid and substantially braced, and shall maintain a plane surface on the bottom. Grate tampers (jitterbugs) shall not be used.

3.6.6.2 Finishing and Floating

As soon as placed and vibrated, the concrete shall be struck off and screeded to the crown and cross section and to such elevation above grade that when consolidated and finished, the surface of the pavement will be at the required elevation. In addition to previously specified complete coverage with handheld immersion vibrators, the entire surface shall be tamped with the strike-off and tamping template, and the tamping operation continued until the required compaction and reduction of internal and surface voids are accomplished (grate tampers shall not be used). Immediately following the final tamping of the surface, the pavement shall be floated longitudinally from bridges resting on the side forms and spanning but not touching the concrete. If necessary, additional concrete shall be placed and screeded, and the float operated until a satisfactory surface has been produced. The floating operation shall be advanced not more than half the length of the float and then continued over the new and previously floated surfaces. Long-handled, flat bull floats shall be used

very sparingly and only as necessary to correct minor, scattered surface defects. If frequent use of bull floats is necessary, the operation shall be stopped and adjusted to eliminate the surface defects. Finishing with hand floats and trowels shall be held to the absolute minimum necessary. Extreme care shall be taken to prevent overfinishing joints and edges. No water shall be added to the pavement during finishing operations.

3.6.7 Texturing

Before the surface sheen has disappeared and before the concrete hardens, the surface of the pavement shall be given a texture as described herein. After curing is complete, all textured surfaces shall be thoroughly power broomed to remove all debris.

3.6.7.1 Fabric Drag Surface Finish

Surface texture shall be applied by dragging the surface of the pavement, in the direction of the concrete placement, with an approved fabric drag. The drag shall be operated with the fabric moist, and the fabric shall be cleaned or changed as required to keep clean. The dragging shall be done so as to produce a uniform finished surface having a fine sandy texture without disfiguring marks.

3.6.8 Edging

After texturing has been completed, the edge of the slabs along the forms, along the edges of slipformed lanes, and at the joints shall be carefully finished with an edging tool to form a smooth rounded surface of 3 mm radius. Tool marks shall be eliminated, and the edges shall be smooth and true to line. No water shall be added to the surface during edging. Extreme care shall be taken to prevent overworking the concrete.

3.6.9 Outlets in Pavement

Recesses for the tie-down anchors, lighting fixtures, and other outlets in the pavement shall be constructed to conform to the details and dimensions shown. The concrete in these areas shall be carefully finished to provide a surface of the same texture as the surrounding area that will be within the requirements for plan grade and surface smoothness.

3.7 CURING

3.7.1 Protection of Concrete

Concrete shall be continuously protected against loss of moisture and rapid temperature changes for at least 7 days from the completion of finishing operations. Unhardened concrete shall be protected from rain and flowing water. All equipment needed for adequate curing and protection of the concrete shall be on hand and ready for use before actual concrete placement begins. Sufficient sheet material to protect unhardened concrete from rain shall be at the paver at all times. Protection shall be provided as necessary to prevent cracking of the pavement due to temperature changes during the curing period. If any selected method of curing does not afford the proper curing and protection against concrete cracking, the damaged pavement shall be removed and replaced, and another method of curing shall be employed as directed. Curing shall be accomplished by one of the following methods.

3.7.2 Membrane Curing

A uniform coating of white-pigmented, membrane-forming, curing compound shall be applied to the entire exposed surface of the concrete as soon as the free water has disappeared from the surface after finishing. evaporation is high and no moisture is present on the surface even though bleeding has not stopped, fog sprays shall be used to keep the surface moist until setting of the cement occurs and bleeding is complete. Curing compound shall then be immediately applied. Along the formed edge faces, it shall be applied immediately after the forms are removed. Concrete shall not be allowed to dry before the application of the membrane. If any drying has occurred, the surface of the concrete shall be moistened with a fine spray of water, and the curing compound applied as soon as the free water disappears. The curing compound shall be applied to the finished surfaces by means of an approved automatic spraying machine. The spraying machine shall be self-propelled and shall span the newly paved lane. The machine shall have one or more spraying nozzles that can be controlled and operated to completely and uniformly cover the pavement surface with the required amount of curing compound. The curing compound in the drum used for the spraying operation shall be thoroughly and continuously agitated mechanically throughout the full depth of the drum during the application. Air agitation may be used only to supplement mechanical agitation. Spraying pressure shall be sufficient to produce a fine spray as necessary to cover the surface thoroughly and completely with a uniform film. Spray equipment shall be kept clean and properly maintained and the spray nozzle or nozzles shall have adequate wind shields. The curing compound shall be applied with an overlapping coverage that will give a two-coat application at a coverage of 10 square meters per L, plus or minus 5.0 percent for each coat. A onecoat application may be applied provided a uniform application and coverage of 5 square meters per L., plus or minus 5.0 percent is obtained. The application of curing compound by hand-operated, mechanical powered pressure sprayers will be permitted only on odd widths or shapes of slabs where indicated and on concrete surfaces exposed by the removal of forms. When the application is made by hand-operated sprayers, the second coat shall be applied in a direction approximately at right angles to the direction of the first coat. The compound shall form a uniform, continuous, cohesive film that will not check, crack, or peel and that will be free from pinholes and other discontinuities. If pinholes, abrasions, or other discontinuities exist, an additional coat shall be applied to the affected areas within 30 minutes. Concrete surfaces that are subjected to heavy rainfall within 3 hours after the curing compound has been applied shall be resprayed by the method and at the coverage specified above. Areas where the curing compound is damaged by subsequent construction operations within the curing period shall be immediately resprayed. The surfaces adjacent to joint sawcuts shall be cleaned and resprayed with curing compound immediately after cutting. Approved standby facilities for curing concrete pavement shall be provided at an accessible location at the job site for use in the event of mechanical failure of the spraying equipment or other conditions that might prevent correct application of the membrane-curing compound at the proper time. Concrete surfaces to which membrane-curing compounds have been applied shall be adequately protected during the entire curing period from pedestrian and vehicular traffic, except as required for joint-sawing operations and surface tests, and from any other possible damage to the continuity of the membrane.

3.8 JOINTS

3.8.1 General Requirements for Joints

Joints shall conform to the details indicated and shall be perpendicular to the finished grade of the pavement. All joints shall be straight and continuous from edge to edge or end to end of the pavement with no abrupt offset and no gradual deviation greater than 12 mm. Before commencing construction, the Contractor shall submit for approval a control plan and equipment to be used for ensuring that all joints are straight from edge to edge of the pavement within the above tolerances. Where any joint fails to meet these tolerances, the slabs adjacent to the joint shall be removed and replaced at no additional cost to the Government. No change from the jointing pattern shown on the drawings shall be made without written approval of the Contracting Officer. Sealing of joints shall be in accordance with Section 02760 FIELD MOLDED SEALANTS FOR SEALING JOINTS IN RIGID PAVEMENTS or Section 02762 COMPRESSION JOINT SEALS FOR CONCRETE PAVEMENTS.

3.8.2 Longitudinal Construction Joints

Longitudinal construction joints between paving lanes shall be located as indicated. Dowels shall be installed in the longitudinal construction joints, or the edges shall be thickened as indicated. Dowels shall be installed in conformance with paragraph, PLACING DOWELS. After the end of the curing period, longitudinal construction joints shall be sawed to provide a groove at the top for sealant conforming to the details and dimensions indicated.

3.8.3 Transverse Construction Joints

Transverse construction joints shall be installed at the end of each day's placing operations and at any other points within a paving lane when concrete placement is interrupted for 30 minutes or longer. When concrete placement cannot be continued, the transverse construction joint shall be installed at a planned transverse joint, if possible. Transverse construction joints shall be constructed by utilizing headers and the very minimum amount of hand placement and finishing techniques. Pavement shall be constructed with the paver as close to the header as possible, and the paver shall be run out completely past the header. Transverse construction joints installed at a planned transverse joint shall be constructed as shown or, if not shown otherwise, shall be dowelled. Those not at a planned transverse joint shall not be sawed or sealed.

3.8.4 Expansion Joints

Expansion joints shall be formed where indicated, and about any structures and features that project through or into the pavement, using joint filler of the type, thickness, and width indicated, and shall be installed to form a complete, uniform separation between the structure and the pavement. The filler shall be attached to the original concrete placement with adhesive or other fasteners and shall extend the full slab depth. Adjacent sections of filler shall be fitted tightly together, and the filler shall extend across the full width of the paving lane or other complete distance in order to prevent entrance of concrete into the expansion space. Edges of the concrete at the joint face shall be finished with an edger with a radius of

3 mm. The joint filler strips shall be installed 20 mm below the pavement surface with a slightly tapered, dressed-and-oiled wood strip or other approved material temporarily secured to the top of the filler to form a recess to be filled with joint sealant. The wood strip shall be removed soon after the concrete has set and the reservoir temporarily filled with an approved material to protect the reservoir until the joint sealer is installed. Expansion joints shall be constructed with dowels or thickened edges as indicated on the drawings for load transfer.

3.8.5 Slip Joints

Slip joints shall be installed where indicated using the specified materials. Preformed joint filler material shall be attached to the face of the original concrete placement with adhesive or other fasteners. Only a material which will remain in place on the vertical surface shall be used. A 20 mm deep reservoir for joint sealant shall be constructed at the top of the joint. Edges of the joint face shall be finished with an edger with a radius of 3 mm.

3.8.6 Contraction Joints

Transverse and longitudinal contraction joints shall be of the weakened-plane or dummy type and shall be constructed as indicated. Longitudinal contraction joints shall be constructed by sawing a groove in the hardened concrete with a power-driven saw in conformance with requirements for sawed joints, unless otherwise approved in writing. Transverse contraction joints shall be constructed in conformance with requirements for sawed joints.

3.8.6.1 Sawed Joints

Sawed contraction joints shall be constructed by sawing an initial groove in the concrete with a 3 mm blade to the indicated depth. During sawing of joints, and again 24 hours later, the CQC team shall inspect all exposed lane edges for development of cracks below the saw cut, and shall immediately report results to the Contracting Officer. If the Contracting Officer determines that there are more uncracked joints than desired, the Contractor will be directed to saw succeeding joints 25 percent deeper than originally indicated at no additional cost to the Government. After expiration of the curing period, the upper portion of the groove shall be widened by sawing to the width and depth indicated for the joint sealer. The time of initial sawing shall vary depending on existing and anticipated weather conditions and shall be such as to prevent uncontrolled cracking of the pavement. Sawing of the joints shall commence as soon as the concrete has hardened sufficiently to permit cutting the concrete without chipping, spalling, or tearing. The sawed faces of joints will be inspected for undercutting or washing of the concrete due to the early sawing, and sawing shall be delayed if undercutting is sufficiently deep to cause structural weakness or excessive roughness in the joint. The sawing operation shall be carried on as required during both day and night regardless of weather conditions. The joints shall be sawed at the required spacing consecutively in the sequence of the concrete placement. A chalk line or other suitable guide shall be used to mark the alignment of the joint. Before sawing a joint, the concrete shall be examined closely for cracks, and the joint shall not be sawed if a crack has occurred near the planned joint location. Sawing shall be discontinued when a crack develops ahead of the saw cut. Workmen and inspectors shall wear clean, rubber-soled footwear, and the number of persons walking on the pavement shall be limited to those actually

performing the sawing operation. Immediately after the joint is sawed, the saw cut and adjacent concrete surface shall be thoroughly flushed with water until all waste from sawing is removed from the joint. The surface shall be resprayed with curing compound as soon as free water disappears. Necessary precautions shall be taken to insure that the concrete is properly cured at sawed joints, but that no curing compound enters the joints. The top of the joint opening and the joint groove at exposed edges shall be tightly sealed with cord, backer rod, or other approved material before the concrete in the region of the joint is resprayed with curing compound. The method used for sealing the joint groove shall prevent loss of moisture from the joint during the entire specified curing period and shall prevent infiltration of foreign material until removed immediately before sawing joint sealant reservoir. The sawing equipment shall be adequate in the number of units and the power to complete the sawing at the required rate. An ample supply of saw blades shall be available on the job before concrete placement is started and at all times during sawing. At least one standby sawing unit in good working order shall be available at the jobsite at all times during the sawing operation.

3.8.7 Thickened Edge Joints

Thickened edge joints shall be constructed as indicated on the drawings. Underlying material in the transition area shall be graded as shown and shall meet the requirements for smoothness and compaction specified for all other areas of the underlying material.

3.8.8 Sealing Joints

Joints shall be sealed immediately following curing of the concrete or as soon thereafter as weather conditions permit. Joints shall be sealed as specified in Section 02760 FIELD MOLDED SEALANTS FOR SEALING JOINTS IN RIGID PAVEMENTS or 02762 COMPRESSION JOINT SEALS FOR CONCRETE PAVEMENTS as indicated on the drawings.

3.9 REPAIR, REMOVAL, REPLACEMENT OF SLABS

3.9.1 General Criteria

New pavement slabs that are broken or contain cracks shall be removed and replaced or repaired, as specified hereinafter at no cost to the Government. Spalls along joints shall be repaired as specified. Where removal of partial slabs is permitted, as specified, removal and replacement shall be full depth, shall be full width of the paving lane, and the limit of removal shall be normal to the paving lane and not less than 3 m from each original transverse joint (i.e., removal portion shall be at least 3 m longitudinally, and portion to remain in place shall be at least 3 m longitudinally; thus, if original slab length is less than 6 m, the entire slab shall be removed). The Contracting Officer will determine whether cracks extend full depth of the pavement and may require cores to be drilled on the crack to determine depth of cracking. Such cores shall be at least 150 mm diameter, shall be drilled by the Contractor and shall be filled by the Contractor with a well consolidated concrete mixture bonded to the walls of the hole with epoxy resin, using approved procedures. Drilling of cores and refilling holes shall be at no expense to the Government. All epoxy resin used in this work shall conform to paragraph EPOXY RESIN, Type and Grade as specified.

3.9.2 Slabs with Cracks Thru Interior Areas

Interior area is defined as that area more than 600 mm from either adjacent original transverse joint. Slabs with any cracks that extend into the interior area, regardless of direction, shall be treated by one of the following procedures.

3.9.2.1 Cracks That Do Not Extend Full Depth of Slab

These cracks, and similar cracks within the areas 600 mm each side of transverse joints, shall be cleaned and then pressure injected with epoxy resin, Type IV, Grade 1, using procedures as approved. The procedure shall not widen the crack during epoxy resin injection. All epoxy resin injection shall take place in the presence of a representative of the Contracting Officer.

3.9.2.2 Cracks That Extend Full Depth of Slab

Where there is any full depth crack at any place within the interior area, the full slab shall be removed. However, if the cracked area all lies within 3 m of one original transverse joint, only a partial slab need be removed provided all criteria specified above for distance from each original transverse joint is met.

3.9.3 Cracks close to and Parallel to Transverse Joints

All cracks essentially parallel to original transverse joints, extending full depth of the slab, and lying wholly within 600 mm either side of the joint shall be treated as specified hereinafter. Any crack extending more than 600 mm from the transverse joint shall be treated as specified above for Slabs With Cracks Through Interior Areas. Any cracks which do not extend full depth of the slab shall be treated as specified above in subparagraph, Cracks That Do Not Extend Full Depth Of Slab, and the original transverse joint constructed as originally designed.

3.9.3.1 Full Depth Cracks Present, Original Joint Not Opened

When the original transverse joint has not opened, the crack shall be routed and sealed, and the original transverse joint filled with epoxy resin. The crack shall be routed with an easily guided, wheel mounted, vertical shaft, powered rotary router designed so the routing spindle will caster as it moves along the crack, or with a small diameter saw designed for this use. The reservoir for joint sealant in the crack shall be formed by routing to a depth of 19 mm, plus or minus 1.5 mm, and to a width of 16 mm, plus or minus 3 mm. Any equipment or procedure which causes ravelling or spalling along the crack shall be modified or replaced to prevent such ravelling or spalling. The joint sealant shall be a liquid sealant as specified for rigid pavement joints. Installation of joint seal shall be as specified for sealing joints or as directed. The uncracked transverse joint shall be filled with epoxy resin. If the joint sealant reservoir has been sawed out, the reservoir and as much of the lower saw cut as possible shall be filled with epoxy resin, Type IV, Grade 2, thoroughly tooled into the void using approved procedures. If only the original narrow saw cut has been made, it shall be cleaned and pressure injected with epoxy resin, Type IV, Grade 1, using approved procedures. Where a parallel crack goes part way across the paving lane and then intersects and follows the original transverse joint which is cracked only for the remainder of the width, it shall be treated as

follows: The area with the separate crack shall be treated as specified above for a parallel crack, and the cracked original joint shall be prepared and sealed as originally designed.

3.9.3.2 Full Depth Cracks, Original Joint Also Cracked

At a transverse joint, if there is any place in the lane width where a parallel crack and a cracked portion of the original joint overlap, a section of the slab containing the crack shall be removed and replaced for the full lane width and at least 3 m long. If this partial slab removal places the limit of removal less than 3 m from the next transverse joint, the entire slab shall be removed. If the parallel crack crosses the transverse joint line, a similar area shall be removed and replaced in both slabs.

3.9.4 Removal and Replacement of Full Slabs

Where it is necessary to remove full slabs, unless there are keys or dowels present, all edges of the slab shall be cut full depth with a concrete saw. All saw cuts shall be perpendicular to the slab surface. If keys or dowels are present along any edges, these edges shall be sawed full depth 150 mm from the edge if only keys are present, or just beyond the end of dowels if they are present. These joints shall then be carefully sawed on the joint line to within 25 mm of the depth of the dowel or key. The main slab shall be further divided by sawing full depth, at appropriate locations, and each piece lifted out and removed. Suitable equipment shall be used to provide a truly vertical lift, and approved safe lifting devices used for attachment to the slabs. The narrow strips along keyed or doweled edges shall be carefully broken up and removed using light, hand-held jackhammers, 14 kg or less, or other approved similar equipment. Care shall be taken to prevent damage to the dowels or keys or to concrete to remain in place. The joint face below keys or dowels shall be suitably trimmed so that there is no abrupt offset in any direction greater than 12 mm and no gradual offset greater than 25 mm when tested in a horizontal direction with a straightedge. No mechanical impact breakers, other than the above hand-held equipment shall be used for any removal of slabs. If underbreak between 37 and 100 mm deep occurs at any point along any edge, the area shall be repaired as directed before replacing the removed slab. Procedures directed will be similar to those specified for surface spalls, modified as necessary. If underbreak over 100 mm deep occurs, the entire slab containing the underbreak shall be removed and replaced. Where there are no dowels, tie bars, or keys on an edge, or where they have been damaged, dowels of the size and spacing as specified for other joints in similar pavement shall be installed by epoxy grouting them into holes drilled into the existing concrete using procedures as specified in paragraph, PLACING DOWELS. Original damaged dowels shall be cut off flush with the joint face. Protruding portions of dowels shall be painted and lightly oiled. All four edges of the new slab shall thus contain dowels or original keys. Placement of concrete shall be as specified for original construction. Prior to placement of new concrete, the underlying material shall be recompacted and shaped as specified in the appropriate section of these specifications, and the surfaces of all four joint faces shall be cleaned of all loose material and contaminants and coated with a double application of membrane forming curing compound as bond breaker. Care shall be taken to prevent any curing compound from contacting dowels. The resulting joints around the new slab shall be prepared and sealed as specified for original construction.

3.9.5 Removal and Replacement of Partial Slabs

Where the above criteria permits removal of partial slabs, removal and replacement operations shall be as specified for full slabs, except that the joint between the removed area and the partial slab to remain in place shall consist of a full depth saw cut across the full lane width and perpendicular to the centerline of the paving lane. Replacement operations shall be the same as specified above, except that, at the joint between the removed area and the partial slab to remain, deformed tie bars shall be epoxy resin grouted into holes drilled into the slab to remain in place. Size and spacing of the tie bars shall be as specified for dowels. Drilling of holes and installation of tie bars shall be as specified for dowels in paragraph, PLACING DOWELS, except that no portion of the tie bars shall be painted or oiled. No curing compound shall be used on this joint face and, immediately before placing new concrete, the joint surface of the partial slab remaining in place shall be coated with epoxy resin, Type V, Grade 2.

3.9.6 Repairing Spalls Along Joints

Where directed, spalls along joints of new slabs, along edges of adjacent existing concrete, and along parallel cracks shall be repaired by first making a vertical saw cut at least 25 mm outside the spalled area and to a depth of at least 50 mm. Saw cuts shall be straight lines forming rectangular areas. The concrete between the saw cut and the joint, or crack, shall be chipped out to remove all unsound concrete and at least a depth of 12 mm of visually sound concrete. The cavity thus formed shall be thoroughly cleaned with high pressure water jets supplemented with compressed air to remove all loose material. Immediately before filling the cavity, a prime coat shall be applied to the dry cleaned surface of all sides and bottom of the cavity, except any joint face. The prime coat shall be applied in a thin coating and scrubbed into the surface with a stiffbristle brush. Prime coat for portland cement repairs shall be a neat cement grout and for epoxy resin repairs shall be epoxy resin, Type III, Grade 1. The cavity shall be filled with low slump portland cement concrete or mortar or with epoxy resin concrete or mortar. Portland cement concrete shall be used for larger spalls, those more than 0.009 cubic meter in size after removal operations; portland cement mortar shall be used for spalls between 0.00085 cubic meter and 0.009 cubic meter; and epoxy resin mortar or Type III, Grade 3 epoxy resin for those spalls less than 0.00085 cubic meter in size after removal operations. Portland cement concretes and mortars shall be very low slump mixtures, 12 mm slump or less, proportioned, mixed, placed, consolidated by tamping, and cured, all as directed. Epoxy resin mortars shall be made with Type III, Grade 1, epoxy resin, using proportions and mixing and placing procedures as recommended by the manufacturer and approved by the Contracting Officer. The epoxy resin materials shall be placed in the cavity in layers not over 50 mm thick. The time interval between placement of additional layers shall be such that the temperature of the epoxy resin material does not exceed 60 degrees C at any time during hardening. Mechanical vibrators and hand tampers shall be used to consolidate the concrete or mortar. Any repair material on the surrounding surfaces of the existing concrete shall be removed before it hardens. Where the spalled area abuts a joint, an insert or other bond-breaking medium shall be used to prevent bond at the joint face. A reservoir for the joint sealant shall be sawed to the dimensions required for other joints, or as required to be routed for cracks. The reservoir shall be thoroughly cleaned and then sealed with the sealer specified for the joints. If any spall penetrates half the depth of the slab or more, the entire slab, or 3 m

portion thereof, shall be removed and replaced as previously specified. In lieu of sawing, spalls not adjacent to joints, and popouts, both less than 150 mm in maximum dimension, may be prepared by drilling a core 50 mm in diameter greater than the size of the defect, centered over the defect, and 50 mm deep or 12 mm into sound concrete, whichever is greater. The core hole shall be repaired as specified above for other spalls.

3.10 EXISTING CONCRETE PAVEMENT REMOVAL AND REPAIR

Existing concrete pavement shall be removed as indicated and as specified in Section 02220 DEMOLITION, modified, and expanded as specified herein. Repairs shall be made as indicated and as specified herein. All operations shall be carefully controlled to prevent damage to the concrete pavement and to the underlying material to remain in place. All saw cuts shall be made perpendicular to the slab surface, and forming rectangular areas.

3.10.1 Removal of Existing Pavement Slab

When existing concrete pavement is to be removed and adjacent concrete is to be left in place, the joint between the removal area and adjoining pavement to stay in place, including dowels or keys, shall first be cut full depth with a standard diamond-type concrete saw. If keys or dowels are present at this joint, the saw cut shall be made full depth at 150 mm from the joint if only keys are present, or just beyond the end of dowels if dowels are present. The edge shall then be carefully sawed on the joint line to within 25 mm of the top of the dowel or key. Next, a full depth saw cut shall be made parallel to the joint at least 600 mm from the joint and at least 150 mm from the end of any dowels. This saw cut shall be made with a wheel saw as specified in paragraph SAWING EQUIPMENT. All pavement to be removed beyond this last saw cut shall be removed using equipment and procedures specified in Section 02220 DEMOLITION and as approved. All pavement between this last saw cut and the joint line shall be removed by carefully pulling pieces and blocks away from the joint face with suitable equipment and then picking them up for removal. In lieu of this method, this strip of concrete may be carefully broken up and removed using hand-held jackhammers, 14 kg or less, or other approved light-duty equipment which will not cause stress to propagate across the joint saw cut and cause distress in the pavement which is to remain in place. In lieu of the above specified removal method, the slab may be sawcut full depth to divide it into several pieces and each piece lifted out and removed. Suitable equipment shall be used to provide a truly vertical lift, and safe lifting devices used for attachment to the slab. Where dowels or keys are present, care shall be taken to produce an even, vertical joint face below the dowels or keys. This joint face shall be trimmed so that there is no abrupt offset in any direction greater than 12 mm and no gradual offset greater than 25 mm when tested in a horizontal direction with a straightedge. If the Contractor is unable to produce such a joint face, or if underbreak or other distress occurs, the Contractor shall saw the dowels or keys flush with the joint. The Contractor shall then install new dowels, of the size and spacing used for other similar joints, by epoxy resin bonding them in holes drilled in the joint face as specified in paragraph, PLACING DOWELS. All this shall be at no additional cost to the Government. Dowels of the size and spacing indicated shall be installed as shown on the drawings by epoxy resin bonding them in holes drilled in the joint face as specified in paragraph, PLACING DOWELS.

3.10.2 Edge Repair

The edge of existing concrete pavement against which new pavement abuts shall be protected from damage at all times. Areas which are damaged during construction shall be repaired at no cost to the Government; repair of previously existing damage areas will be considered a subsidiary part of concrete pavement construction.

3.10.2.1 Spall Repair

Spalls along joints and along cracks shall be repaired where indicated and where directed. Repair materials and procedures shall be as previously specified in subparagraph, Repairing Spalls Along Joints.

3.10.2.2 Underbreak Repair

All underbreak shall be repaired. First, all delaminated and loose material shall be carefully removed. Next, the underlying material shall be recompacted, without addition of any new material. Finally, the void shall be completely hand-filled with paving concrete mixture, thoroughly consolidated. Care shall be taken to produce an even joint face from top to bottom. Prior to placing concrete, the underlying material shall be thoroughly moistened. After placement, the exposed surface shall be heavily coated with curing compound. All this shall be done at least 24 hours before placing the new paving concrete against the joint.

3.10.2.3 Underlying Material

The underlying material adjacent to the edge of and under the existing pavement which is to remain in place shall be protected from damage or disturbance during removal operations and until placement of new concrete, and shall be shaped as shown on the drawings or as directed. Sufficient underling material shall be kept in place outside the joint line to completely prevent disturbance of material under the pavement which is to remain in place. Any material under the portion of the concrete pavement to remain in place which is disturbed or loses its compaction shall be carefully removed and replaced with concrete as specified above under Underbreak Repair. The underlying material outside the joint line shall be thoroughly compacted and shall be moist when new concrete is placed.

3.11 PAVEMENT PROTECTION

The Contractor shall protect the pavement against all damage prior to final acceptance of the work by the Government. Aggregates rubble, or other similar construction materials shall not be piled on airfield pavements. Traffic shall be excluded from the new pavement by erecting and maintaining barricades and signs until the concrete is at least 14 days old, or for a longer period if so directed. As a construction expedient in paving intermediate lanes between newly paved pilot lanes, operation of the hauling equipment will be permitted on the new pavement after the pavement has been cured for 7 days and the joints have been sealed or otherwise protected. Also, the subgrade planer, concrete paving and finishing machines, and similar equipment may be permitted to ride upon the edges of previously constructed slabs when the concrete has attained a minimum flexural strength of 2.8 MPa and approved means are furnished to prevent damage to the slab edge. All new and existing pavement carrying construction traffic or equipment shall be continuously kept completely clean, and spillage of

concrete or other materials shall be cleaned up immediately upon occurrence. Special care shall be used where Contractor's traffic uses or crosses active airfield pavement. In these areas, if necessary in order to accomplish this, full-time workmen with hand brooms shall be used at anytime there is traffic. Other existing pavements used by the Contractor shall be power broomed at least daily when traffic operates. For fill-in lanes, equipment shall be used that will not damage or spall the edges or joints of the previously constructed pavement.

3.12 TESTING AND INSPECTION FOR CONTRACTOR QUALITY CONTROL

3.12.1 Testing and Inspection by Contractor

The Contractor shall perform the inspection and tests described below, and based upon the results of these inspections and tests, shall take the action required and submit reports as required. When, in the opinion of the Contracting Officer, the paving operation is out of control, concrete placement shall cease. The laboratory performing the tests shall be on-site and shall conform with ASTM C 1077. The individuals who sample and test concrete or the constituents of concrete as required in this specification shall have demonstrated a knowledge and ability to perform the necessary test procedures equivalent to the ACI minimum quidelines for certification of Concrete Field Testing Technicians, Grade I. The individuals who perform the inspection of concrete shall have demonstrated a knowledge and ability equivalent to the ACI minimum guidelines for certification of Concrete Construction Inspector, Level II. The Government will inspect the laboratory, equipment, and test procedures prior to start of concreting operations and at least once per year thereafter for conformance with ASTM C 1077. This testing shall be performed by the Contractor regardless of any other testing performed by the Government, either for pay adjustment purposes or for any other reason.

3.12.2 Testing and Inspection Requirements

3.12.2.1 Fine Aggregate

- a. Grading. At least twice during each day's production when the concrete plant is operating, there shall be one sieve analysis and fineness modulus determination in accordance with ASTM C 136 and COE CRD-C 104 for the fine aggregate or for each fine aggregate if it is batched in more than one size or classification. The location at which samples are taken may be selected by the Contractor as the most advantageous for control. However, the Contractor is responsible for delivering fine aggregate to the mixer within specification limits.
- b. Corrective Action for Fine Aggregate Grading. When the amount passing on any sieve is outside the specification limits, the fine aggregate shall be immediately resampled and retested. If there is another failure on any sieve, the fact shall be immediately reported to the Contracting Officer, paving shall be stopped, and immediate steps taken to correct the grading.

3.12.2.2 Coarse Aggregate

a. Grading. At least twice during each day's production in which the concrete plant is operating, there shall be a sieve analysis in accordance with ASTM C 136 for each size of coarse aggregate. The

location at which samples are taken may be selected by the Contractor as the most advantageous for production control. However, the Contractor shall be responsible for delivering the aggregate to the mixer within specification limits. A test record of samples of aggregate taken at the same locations shall show the results of the current test as well as the average results of the five most recent tests including the current test. The Contractor may adopt approved limits for control coarser than the specification limits for samples taken other than as delivered to the mixer to allow for degradation during handling.

b. Corrective Action for Grading. When the amount passing any sieve is outside the specification limits, the coarse aggregate shall be immediately resampled and retested. If the second sample fails on any sieve, that fact shall be reported to the Contracting Officer, and steps taken to correct the grading. Where two consecutive averages of 5 tests are outside specification limits, the operation shall be considered out of control and shall be reported to the Contracting Officer, paving shall be stopped, and immediate steps shall be taken to correct the grading.

3.12.2.3 Quality of Aggregates

Thirty days prior to the start of concrete placement, the Contractor shall submit results of all tests specified for course and fine aggregate quality including deleterious materials. The initial stockpiles for approval of course and fine aggregates will be 1000 cubic meters. The Contractor shall perform similar tests for aggregate quality for every 3000 cubic meters of course and fine aggregate produced. Each stockpile will be clearly segregated, and clearly identified at the quarry. Mixing of stockpiles will not be allowed. When, as directed by the Contracting Officer, the aggregates have passed all of the requirements for aggregate quality, the stockpile will be approved for transportation to the project site. Preapproval of aggregate stockpiles at the quarry shall in no way relieve the Contractor from all of the specified testing requirements.

3.12.2.4 Scales, Batching and Recording

- a. Weighing Accuracy. The accuracy of the scales shall be checked by test weights prior to start of concrete operations and at least once every month for conformance with specified requirements. Such tests shall also be made as directed whenever there are variations in properties of the fresh concrete that could result from batching errors.
- b. Batching and Recording Accuracy. Once a week the accuracy of each batching and recording device shall be checked during a weighing operation by noting and recording the required mass, recorded mass, and the actual mass batched. The Contractor shall test and ensure that the devices for dispensing admixtures are operating properly and accurately.
- c. Corrective Action. When either the weighing accuracy or batching accuracy does not comply with specification requirements, the plant shall not be operated until necessary adjustments or repairs have been made. Discrepancies in recording accuracies shall be corrected immediately.

3.12.2.5 Batch-Plant Control

The measurement of all constituent materials including cementitious materials, each size of aggregate, water, and admixtures shall be continuously controlled. The aggregate masses and amount of added water shall be adjusted as necessary to compensate for free moisture in the aggregates. The amount of air-entraining agent shall be adjusted to control air content within specified limits. A report shall be prepared indicating type and source of cement used, type and source of pozzolan or slag used, amount and source of admixtures used, aggregate source, the required aggregate and water masses per cubic meter, amount of water as free moisture in each size of aggregate, and the batch aggregate and water masses per cubic meter for each class of concrete batched during each day's plant operation.

3.12.2.6 Concrete Mixture

- a. Air Content Testing. Air content tests shall be made when test specimens are fabricated. In addition, at least two other tests for air content shall be made on randomly selected batches of each separate concrete mixture produced during each 8-hour period of paving. Additional tests shall be made when excessive variation in workability is reported by the placing foreman or Government inspector. Tests shall be made in accordance with ASTM C 231. Test results shall be plotted on control charts which are kept current and shall, at all times, be readily available to the Government and shall be submitted weekly. Copies of the current control charts shall be kept in the field by testing crews and results plotted as tests are made. When a single test result reaches either the upper or lower action limit, a second test shall immediately be made. The results of the two tests shall be averaged and this average used as the air content of the batch to plot on both the air content and the control chart for range, and for determining need for any remedial action. The result of each test, or average as noted in the previous sentence, shall be plotted on a separate control chart for each mixture on which an average line is set at the midpoint of the specified air content range from paragraph SPECIFIED CONCRETE STRENGTH AND OTHER PROPERTIES. An upper warning limit and a lower warning limit line shall be set 1.0 percentage point above and below the average line, respectively. An upper action limit and a lower action limit line shall be set 1.5 percentage points above and below the average line, respectively. The range between each two consecutive tests shall be plotted on a secondary control chart for range where an upper warning limit is set at 2.0 percentage points and an upper action limit is set at 3.0 percentage points. Samples for air content shall be taken at the paving site. The Contractor shall deliver the concrete to the paving site at the stipulated air content. If the Contractor's materials or transportation methods cause air content loss between the mixer and the paving site, correlation samples shall be taken at the paving site as required by the Contracting Officer, and the air content at the mixer controlled as directed.
- b. Air Content Corrective Action. Whenever points on the control chart for percent air reach either warning limit, an adjustment shall immediately be made in the amount of air-entraining admixture batched. As soon as practical after each adjustment, another test shall be made to verify the result of the adjustment. Whenever a point on the

secondary control chart for range reaches the warning limit, the admixture dispenser shall be recalibrated to insure that it is operating accurately and with good reproducibility. Whenever a point on either control chart (single test or result of two tests made concurrently, as specified above) reaches an action limit line, the air content shall be considered out of control and the paving operation shall immediately be halted until the air content is under control. Additional air content tests shall be made when paving is restarted.

- c. Slump Testing. Slump tests shall be made when test specimens are fabricated. In addition, at least four other slump tests shall be made on randomly selected batches in accordance with ASTM C 143/C 143M for each separate concrete mixture produced during each 8-hour or less period of concrete production each day. Also, additional tests shall be made when excessive variation in workability is reported by the placing foreman or Government inspector. Test results shall be plotted on control charts which shall at all times be readily available to the Government and shall be submitted weekly. Copies of the current control charts shall be kept in the field by testing crews and results plotted as tests are made. When a single slump test reaches or goes beyond the upper action limit, a second test shall immediately be made. The results of the two tests shall be averaged and this average used as the slump of the batch to plot on both the control chart for slump and the chart for range, and for determining need for any remedial action. An upper warning limit shall be set at 12 mm below the maximum allowable slump on separate control charts for slump used for each type of mixture as specified in paragraph, SPECIFIED CONCRETE STRENGTH AND OTHER PROPERTIES, and an upper action limit line shall be set at the maximum allowable slump, as specified in the same paragraph for fixed form paving or as selected by the Contractor at the start of the project for slipform paving. The range between each consecutive slump test for each type of mixture shall be plotted on a single control chart for range on which an upper action limit is set at 38 mm. Samples for slump shall be taken at the paving site. The Contractor is responsible for delivering the concrete to the paving site at the stipulated slump. If the Contractor's materials or transportation methods cause slump loss between the mixer and the paving site, correlation samples shall be taken at the paving site as required by the Contracting Officer, and the slump at the mixer controlled as directed.
- d. Slump Corrective Action. Whenever points on the control charts for slump reach the upper warning limit, an approved adjustment shall immediately be made in the batch masses of water and fine aggregate. The adjustments are to be made so that the total water content does not exceed that amount allowed by the maximum w/c specified, based on aggregates which are in a saturated surface dry condition. When a slump result (average of two tests made concurrently, as specified above) exceeds the upper action limit, no further concrete shall be delivered to the paving site until proper adjustments have been made. Immediately after each adjustment, another test shall be made to verify the correctness of the adjustment. Whenever two consecutive individual slump tests, made during a period when there was no adjustment of batch masses, produce a point on the control chart for range at or above the upper action limit, the paving operation shall immediately be halted, and the Contractor shall take approved steps to bring the slump under control. Additional slump tests shall be made as directed.

e. Temperature. The temperature of the concrete shall be measured when compressive strength specimens are fabricated. Measurement shall be in accordance with ASTM C 1064/C 1064M. The temperature shall be reported along with the compressive strength data.

3.12.2.7 Concrete Strength Testing for CQC

Contractor Quality Control operations for concrete strength shall consist of the following steps:

- a. Take samples for strength tests at the paving site. Fabricate and cure test cylinders in accordance with ASTM C 31/C 31M; test them in accordance with ASTM C 39/C 39M.
- b. Fabricate and cure 2 test cylinders per sublot from the same batch or truckload and at the same time acceptance cylinders are fabricated and test them for compressive strength at 7-day age.
- c. Average all 8 compressive tests per lot. Convert this average 7-day compressive strength per lot to equivalent 90-day flexural strength using the Correlation Ratio determined during mixture proportioning studies.
- d. Compare the equivalent 90-day flexural strength from the conversion to the Average Flexural Strength Required for Mixtures from paragraph of same title.
- e. If the equivalent average 90-day strength for the lot is below the Average Flexural Strength Required for Mixtures by 138 kPa flexural strength or more, at any time, adjust the mixture to increase the strength, as approved.
- f. If the equivalent average 90-day strength is above the Average Flexural Strength Required for Mixtures by 138 kPa flexural strength or more for 2 consecutive days, the Contractor will be permitted to adjust the mixture to decrease the strength, as approved.
- g. The Contractor's CQC testing agency shall maintain up-to-date control charts for strength, showing the 7-day CQC compressive strength, the 14-day compressive strength (from acceptance tests) and the 90-day equivalent flexural strength of each of these for each lot.

3.12.2.8 Inspection Before Placing

Underlying materials, construction joint faces, forms, reinforcing, dowels, and embedded items shall be inspected by the Contractor in sufficient time prior to each paving operation in order to certify to the Contracting Officer that they are ready to receive concrete. The results of each inspection shall be reported in writing.

3.12.2.9 Paving

a. Paving Inspection. The placing foreman shall supervise all placing and paving operations, shall determine that the correct quality of concrete is placed in each location as shown and that finishing is performed as specified; shall be responsible for measuring and

recording concrete temperatures and ambient temperature hourly during placing operations, weather conditions, time of placement, volume of concrete placed, and method of paving and any problems encountered.

b. Placing and Paving Corrective Action. The paving foreman shall not permit batching and paving to begin until it has been verified that an adequate number of vibrators in working order and with competent operators are available. Paving shall not be continued if piles of concrete exist or if the concrete is inadequately consolidated or if surface finish is not satisfactory. If any batch of concrete fails to meet the temperature requirements, immediate steps shall be taken to improve temperature controls.

3.12.2.10 Vibrators

- a. Vibrator Testing and Use. The frequency and amplitude of each vibrator shall be determined in accordance with COE CRD-C 521 prior to initial use and at least once a month when paving is in progress. Additional tests shall be made as directed when a vibrator does not appear to be adequately consolidating the concrete. The frequency shall be determined while the vibrator is operating in concrete with the tachometer being held against the upper end of the vibrator head while almost submerged and just before the vibrator is withdrawn from the concrete. The amplitude shall be determined with the head vibrating in air. Two measurements shall be taken, one near the tip and another near the upper end of the vibrator head, and these results averaged. The make, model, type, and size of the vibrator and frequency and amplitude results shall be reported in writing.
- b. Vibrator Corrective Action. Any vibrator not meeting the requirements of subparagraphs, Paver-Finisher and Consolidation, shall be immediately removed from service and repaired or replaced.

3.12.2.11 Curing Inspection

- a. Membrane Curing Inspection. No curing compound shall be applied until the Contractor has verified that the compound is properly mixed and ready for spraying. At the end of each day's operation, the quantity of compound used shall be determined by measurement of the container and the area of concrete surface covered; the Contractor shall then compute the rate of coverage in square meters per L and shall also note whether or not coverage is uniform. All this shall be reported daily.
- b. Membrane Curing Corrective Action. When the coverage rate of the curing compound is less than that specified or when the coverage is not uniform, the entire surface shall be sprayed again.

3.12.2.12 Cold-Weather Protection

At least once each shift and once per day on non-work days, an inspection shall be made of all areas subject to cold-weather protection. Any deficiencies shall be noted, corrected, and reported.

3.12.2.13 Mixer Uniformity

- a. Stationary Mixers. Prior to the start of concrete placing and once every 4 months when concrete is being placed, or once for every 38,000 cubic meters of concrete placed, whichever results in the longest time interval, uniformity of concrete mixing shall be determined in accordance with COE CRD-C 55. The original test shall be a Regular Test. After the mixing operation has been tested and approved, subsequent tests shall be Abbreviated Tests.
- b. Mixer Uniformity Corrective Action. When a mixer fails to meet mixer uniformity requirements, either the mixing time shall be increased, batching sequence changed, batch size reduced, or adjustments shall be made to the mixer until compliance is achieved. After adjustments have been made, another uniformity test shall be made.

3.12.2.14 Reports

All results of tests or inspections conducted shall be reported informally as they are completed and in writing daily. A weekly report shall be prepared for the updating of control charts covering the entire period from the start of the construction season through the current week. During periods of cold-weather protection, reports of pertinent temperatures shall be made daily. These requirements do not relieve the Contractor of the obligation to report certain failures immediately as required in preceding paragraphs. Such reports of failures and the action taken shall be confirmed in writing in the routine reports. The Contracting Officer has the right to examine all contractor quality control records.

-- End Of Section --